Thông tin tài liệu:
20 đề ôn thi thử đại học 2008 Thạc sĩ Đoàn Vương Nguyên nhằm giúp các em học sinh có tài liệu ôn tập, luyện tập nhằm nắm vững được những kiến thức, kĩ năng cơ bản, đồng thời vận dụng kiến thức để giải các bài tập một cách thuận lợi và tự kiểm tra đánh giá kết quả học tập của mình Tài liệu mang tính chất tham khảo, giúp ích cho các bạn tự học, ôn thi, với phương pháp giải hay, thú vị, rèn luyện kỹ năng giải đề, nâng cao vốn kiến...
Nội dung trích xuất từ tài liệu:
20 đề ôn thi thử đại học 200820 đề ôn thi thử đại học 2008 MÔN TOÁNThS. Ñoaøn Vöông Nguyeân Edited by Foxit Reader ñeà toaùn toång hôïp naêm 2008 20 Boä Copyright(C) by Foxit Software Company,2005-2006 ÑEÀ SOÁ 1 For Evaluation Only.PH N CHUNG CHO T T C THÍ SINHCâu I (2 ñi m) Cho hàm s y = −x 4 + 2x2 + 1 có ñ th là (C). 1. Kh o sát s bi n thiên và v ñ th (C). 2. Tìm nh ng ñi m M trên tr c tung sao cho t ñó v ñư c 4 ti p tuy n ñ n ñ th (C).Câu II (2 ñi m) 1. Gi i phương trình: 4 cos3 x + 2 cos2 x(2 sin x − 1) − sin 2x − 2(sin x + cos x) = 0. 2 sin2 x − 1 2. Gi i b t phương trình: x 2 − 1 + x 2 − 3x + 2 ≥ x 2 − x .Câu III (2 ñi m) Trong không gian v i h t a ñ Oxyz cho hai ñi m A(3; 0; 2), B(1;–1; 0) và m t ph ng ( α ) : x − 2y + 2z − 3 = 0 . 1. L p phương trình m t ph ng ( β ) ñi qua A, B và vuông góc v i ( α ) . 2. Tìm trên m t ph ng ( α ) ñi m C sao cho ∆ABC vuông cân t i B.Câu IV (2 ñi m) x2 1. Cho hàm s F(x) = ∫ sin t dt v 2 i x > 0. Tính F/ (x) . x 2. Cho 3 s th c a, b, c th a a ≤ 6 , b ≤ −8 và c ≤ 3 . Ch ng minh r ng v i ∀x ≥ 1 ta luôn có x 4 ≥ ax 2 + bx + c .PH N T CH N: Thí sinh ch ñư c ch n làm câu V.a ho c câu V.bCâu V.a. Theo chương trình THPT không phân ban (2 ñi m) 1. Trong m t ph ng v i h t a ñ Oxy, cho ∆ABC vuông t i C, bi t ñi m A(–2; 0), B(2; 0) 1 và kho ng cách t tr ng tâm G ñ n Ox b ng . Tìm t a ñ c a ñ nh C. 3 2. Ch ng minh ñ ng th c sau: C10C10 + C1 C20 + C10C20 + ... + C10C2 + C10C1 + C10C20 = C10 . 0 20 10 9 2 8 8 20 9 20 10 0 30Câu V.b. Theo chương trình THPT phân ban thí ñi m (2 ñi m) log2008 2x = y − 2x y 1. Gi i h phương trình: 3 . x + y 3 = x +y 2 2 xy 2. Tính th tích c a hình chóp tam giác ñ u S.ABC theo a và b. Bi t hình chóp có ñ dài c nh ñáy là a và c nh bên là b. ……………………H t…………………….. Trang 1ThS. Ñoaøn Vöông Nguyeân Edited by Foxit Reader ñeà toaùn toång hôïp naêm 2008 20 Boä Copyright(C) by Foxit Software Company,2005-2006 ÑEÀ SOÁ 2 For Evaluation Only.PH N CHUNG CHO T T C THÍ SINHCâu I (2 ñi m) Cho hàm s y = x 2 (m − x) − m (1), m là tham s . 1. Kh o sát s bi n thiên và v ñ th c a hàm s (1) khi m = 1. 2. Tìm k theo m ñ (d) : y = kx + k + 1 c t ñ th hàm s (1) t i 3 ñi m phân bi t.Câu II (2 ñi m) π 1. Tìm ñi u ki n c a m ñ phương trình sau có ít nh t 1 nghi m thu c ño n 0; : 2 2 cos 2x + sin x cos x + sin x cos x = m(sin x + cos x) . 2 2 2. Tìm ñi u ki n c a m ñ phương trình sau có 4 nghi m th c phân bi t: −x2 + 2 4 − x2 + 5 + 4 − x2 = m − x2 .Câu III (2 ñi m) Trong không gian v i h t a ñ Oxyz cho x + 2y − 3 = 0 m t ph ng (P): x + y + z = 0 và ñư ng th ng d1 : . 3x − 2z − 7 = 0 ...