A machine learning approach for calibrating seismic interval velocity in 3D velocity model
Số trang: 7
Loại file: pdf
Dung lượng: 539.74 KB
Lượt xem: 18
Lượt tải: 0
Xem trước 1 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Velocity model technique is routinely used to convert data from the time-to-depth domain to support prospect evaluation, reservoir modelling, well engineering, and further drilling operation. In Vietnam, the conventional velocity model building workflow oversimplifies the interval velocities as only well interval velocities are populated into 2D grids for depth conversion or oversimplified calibration interval velocities by applying a single scaling factor function.
Nội dung trích xuất từ tài liệu:
A machine learning approach for calibrating seismic interval velocity in 3D velocity model
Nội dung trích xuất từ tài liệu:
A machine learning approach for calibrating seismic interval velocity in 3D velocity model
Tìm kiếm theo từ khóa liên quan:
Velocity model Seismic attribute Depth uncertainty analysis Machine learning Cuu Long basinGợi ý tài liệu liên quan:
-
9 trang 187 0 0
-
Nuclear energy system's behavior and decision making using machine learning
8 trang 110 0 0 -
95 trang 65 0 0
-
Ebook Disrupting finance: FinTech and strategy in the 21st century
194 trang 52 0 0 -
Bài giảng Trí tuệ nhân tạo dành cho mọi người - ThS. Nguyễn Ngọc Tú
149 trang 51 0 0 -
Knowledge management system building blocks
12 trang 45 0 0 -
Ebook The data science design manual: Part 2
240 trang 40 0 0 -
Building credit scoring process in Vietnamese commercial banks using machine learning
14 trang 40 0 0 -
Pseudorandom sequences classification algorithm
8 trang 40 0 0 -
Phát hiện tin giả với python và machine learning
14 trang 37 0 0