Danh mục

Art of Surface Interpolation-Chapter 1: Introduction

Số trang: 12      Loại file: pdf      Dung lượng: 2.18 MB      Lượt xem: 11      Lượt tải: 0    
10.10.2023

Phí tải xuống: 4,000 VND Tải xuống file đầy đủ (12 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Thuật toán và năm năm kinh nghiệm với giải quyết vấn đề nội suy bề mặtđược cung cấp bởi người dân trên khắp thế giới.Sự thành công của suy và chất lượng của bề mặt kết quả phụ thuộc vào cấu hìnhdữ liệu đầu vào, phương pháp lựa chọn, các thông số của suy, kích thước lưới điện và như vậytrên. Từ quan điểm này, suy bề mặt có thể được coi là một nghệ thuật.Phần đầu tiên mô tả các yếu tố toán học của phương pháp thường được sử dụng dựa trên chính xáccông thức toán học như...
Nội dung trích xuất từ tài liệu:
Art of Surface Interpolation-Chapter 1: IntroductionArt of Surface Interpolation Mgr. Miroslav Dressler, Ph.D. KUNŠTÁT, 2009 1 PrefaceThe following text is based on my twenty years experience in developing a surface in-terpolation algorithm and five years experience with solving surface interpolation prob-lems provided by people all over the world.The success of interpolation and quality of the resulting surface depends on the config-uration of input data, the selected method, parameters of interpolation, grid size and soon. From this point of view, surface interpolation can be considered as an art.The first part describes mathematical elements of commonly used methods based on ex-act mathematical formulations such as linear combination of radial basis functions, stat-istical formulation of the best linear unbiased estimate or on the demand of minimalcurvature of a resulting function.The purpose of the second part is to design and implement a new interpolation methodABOS (Approximation Based On Smoothing), which would eliminate limitations of ex-isting methods and which would be robust and flexible enough for interpolating anydata set, such as a complex of geological and seismic measurements, temperature distri-bution, height of a snow layer, concentration of contaminants in an aquifer or digitalmodel of terrain.The new method is not based on a mathematical definition of a resulting interpolationfunction. Instead, it provides tools for modelling surface shapes – three types of numer-ical tensioning and smoothing – enabling to achieve smooth interpolation or approxima-tion as well as an interpolation with sharp local extremes. 2List of symbolsSymbol Meaning ℜ3 three dimensional Euclidean spaceXYZ sequence { X i ,Y i , Z i ∈ ℜ3 , i=1,... , n } of points in 3D space x1 , x2 minimum and maximum of x-coordinates of points XYZ y1 , y2 minimum and maximum of y-coordinates of points XYZ z1 , z2 minimum and maximum of z-coordinates of points XYZ f ( x, y ) interpolation / approximation functionD planar domain of f ( x, y )γ (h) variogram functionP matrix representing grid values i1 , j1 size of the grid = number of columns and rows of the matrix PDx step of the grid in the x-directionDy the step of the grid in the y-directionNB matrix of the nearest pointsK matrix of distancesKmax maximal element of the matrix K3D three-dimensionalRS resolution of mapFilter parameter of the ABOS method used for setting resolutionDmc the minimal Chebyshev distanceA→B copy of the matrix (or vector or number) A into the matrix (or vector or number) B 3Chapter 1IntroductionSurface interpolation and construction of maps have been traditionally used in many fieldssuch as physics, geophysics, geology, geodesy, hydrology, meteorology, bathymetry and soon.The intention of this work is to compare commonly used interpolation / approximationmethods, evaluate their advantages, insufficiencies and limitations and further to design andto implement a new universal interpolation / approximation method which would enable tosolve a quite large class of tasks.1.1 Formulation of the interpolation / approximationproblem 3Let us denote XYZ as a sequence { X i ,Y i , Z i ∈ ℜ , i=1, , n } of points in 3D space and 2D as a rectangular domain containing points XY ={ X i , Y i  ∈ ℜ , i=1, , n } . In thiswork, the solving an interpolation or approximation problem will mean the finding a con-tinuous function of two independent variables f  x , y  , for which f  X i , Y i =Z i or ∣ f  X i , Y i −Z i∣ ∀i=1,  , n respectively.Except for trivial cases (for example approximation by a plane or by a polynomial functionof two independent variables of higher degree) it is usually not possible to express the inter-polation / approximation function by a simple analytic formula. That is why the followingprocedure is used:The domain D containing the points XYZ is covered by a regular rectangular grid. At eachnode of the grid the z-value is calculated / estimated by the method solving the above-men-tioned problem using all points XYZ or using only the points XYZ belonging to the certainsurrounding of the node. This procedure is called gridding.The value of the function f can then be computed, for example, using the bilinear equation f  x , y =a⋅xyb⋅xc ...

Tài liệu được xem nhiều: