Bài giảng Computer architecture: Part III
Số trang: 88
Loại file: ppt
Dung lượng: 1.84 MB
Lượt xem: 19
Lượt tải: 0
Xem trước 9 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Cùng tìm hiểu number representation; adderes and simple ALUs; multippliers and dividers;... được trình bày cụ thể trong "Bài giảng Computer architecture: Part III - The Arithmetic/Logic Unit". Mời các bạn cùng tìm hiểu để nắm bắt nội dung thông tin tài liệu.
Nội dung trích xuất từ tài liệu:
Bài giảng Computer architecture: Part III Part III The Arithmetic/Logic Unit Mar. 2006 Computer Architecture, The Arithmetic/Logic Unit Slide 1 About This Presentation This presentation is intended to support the use of the textbook Computer Architecture: From Microprocessors to Supercomputers, Oxford University Press, 2005, ISBN 0-19-515455-X. It is updated regularly by the author as part of his teaching of the upper- division course ECE 154, Introduction to Computer Architecture, at the University of California, Santa Barbara. Instructors can use these slides freely in classroom teaching and for other educational purposes. Any other use is strictly prohibited. © Behrooz Parhami Edition Released Revised Revised Revised Revised First July 2003 July 2004 July 2005 Mar. 2006 Mar. 2006 Computer Architecture, The Arithmetic/Logic Unit Slide 2 III The Arithmetic/Logic Unit Overview of computer arithmetic and ALU design: • Review representation methods for signed integers • Discuss algorithms & hardware for arithmetic ops • Consider floating-point representation & arithmetic Topics in This Part Chapter 9 Number Representation Chapter 10 Adders and Simple ALUs Chapter 11 Multipliers and Dividers Chapter 12 Floating-Point Arithmetic Mar. 2006 Computer Architecture, The Arithmetic/Logic Unit Slide 3 Computer Arithmetic as a Topic of Study Brief overview article – Encyclopedia of Info Systems, Academic Press, 2002, Vol. 3, pp. 317-333 Our treatment of the topic falls between the two extremes (four chapters) Graduate course ECE 252B – Text: Computer Arithmetic, Oxford U Press, 2000 Mar. 2006 Computer Architecture, The Arithmetic/Logic Unit Slide 4 9 Number Representation Arguably the most important topic in computer arithmetic: • Affects system compatibility and ease of arithmetic • Two’s complement, flp, and unconventional methods Topics in This Chapter 9.1 Positional Number Systems 9.2 Digit Sets and Encodings 9.3 Number-Radix Conversion 9.4 Signed Integers 9.5 Fixed-Point Numbers 9.6 Floating-Point Numbers Mar. 2006 Computer Architecture, The Arithmetic/Logic Unit Slide 5 9.1 Positional Number Systems Representations of natural numbers {0, 1, 2, 3, …} ||||| ||||| ||||| ||||| ||||| || sticks or unary code 27 radix-10 or decimal code 11011 radix-2 or binary code XXVII Roman numerals Fixed-radix positional representation with k digits k–1 Value of a number: x = (xk–1xk–2 . . . x1x0)r = xi r i i=0 For example: 27 = (11011)two = (1 24) + (1 23) + (0 22) + (1 21) + (1 20) Number of digits for [0, P]: k = logr (P + 1) = logr P + 1 Mar. 2006 Computer Architecture, The Arithmetic/Logic Unit Slide 6 Unsigned Binary Integers 0000 1111 0001 Turn x notches counterclockwise 0 1110 15 1 0010 to add x 14 2 1101 0011 13 3 15 1 14 2 13 0 3 Inside: Natural number 1100 12 4 0100 12 4 Outside: 4-bit encoding 11 5 11 5 10 6 1011 0101 9 8 7 10 6 1010 9 7 0110 Turn y notches 8 clockwise 1001 0111 to subtract y 1000 Figure 9.1 Schematic representation of 4-bit code for integers in [0, 15]. Mar. 2006 Computer Architecture, The Arithmetic/Logic Unit Slide 7 Representation Range and Overflow Overflow region max max Overflow region Numbers smaller Numbers larger than max than max Finite set of representable numbers Figu ...
Nội dung trích xuất từ tài liệu:
Bài giảng Computer architecture: Part III Part III The Arithmetic/Logic Unit Mar. 2006 Computer Architecture, The Arithmetic/Logic Unit Slide 1 About This Presentation This presentation is intended to support the use of the textbook Computer Architecture: From Microprocessors to Supercomputers, Oxford University Press, 2005, ISBN 0-19-515455-X. It is updated regularly by the author as part of his teaching of the upper- division course ECE 154, Introduction to Computer Architecture, at the University of California, Santa Barbara. Instructors can use these slides freely in classroom teaching and for other educational purposes. Any other use is strictly prohibited. © Behrooz Parhami Edition Released Revised Revised Revised Revised First July 2003 July 2004 July 2005 Mar. 2006 Mar. 2006 Computer Architecture, The Arithmetic/Logic Unit Slide 2 III The Arithmetic/Logic Unit Overview of computer arithmetic and ALU design: • Review representation methods for signed integers • Discuss algorithms & hardware for arithmetic ops • Consider floating-point representation & arithmetic Topics in This Part Chapter 9 Number Representation Chapter 10 Adders and Simple ALUs Chapter 11 Multipliers and Dividers Chapter 12 Floating-Point Arithmetic Mar. 2006 Computer Architecture, The Arithmetic/Logic Unit Slide 3 Computer Arithmetic as a Topic of Study Brief overview article – Encyclopedia of Info Systems, Academic Press, 2002, Vol. 3, pp. 317-333 Our treatment of the topic falls between the two extremes (four chapters) Graduate course ECE 252B – Text: Computer Arithmetic, Oxford U Press, 2000 Mar. 2006 Computer Architecture, The Arithmetic/Logic Unit Slide 4 9 Number Representation Arguably the most important topic in computer arithmetic: • Affects system compatibility and ease of arithmetic • Two’s complement, flp, and unconventional methods Topics in This Chapter 9.1 Positional Number Systems 9.2 Digit Sets and Encodings 9.3 Number-Radix Conversion 9.4 Signed Integers 9.5 Fixed-Point Numbers 9.6 Floating-Point Numbers Mar. 2006 Computer Architecture, The Arithmetic/Logic Unit Slide 5 9.1 Positional Number Systems Representations of natural numbers {0, 1, 2, 3, …} ||||| ||||| ||||| ||||| ||||| || sticks or unary code 27 radix-10 or decimal code 11011 radix-2 or binary code XXVII Roman numerals Fixed-radix positional representation with k digits k–1 Value of a number: x = (xk–1xk–2 . . . x1x0)r = xi r i i=0 For example: 27 = (11011)two = (1 24) + (1 23) + (0 22) + (1 21) + (1 20) Number of digits for [0, P]: k = logr (P + 1) = logr P + 1 Mar. 2006 Computer Architecture, The Arithmetic/Logic Unit Slide 6 Unsigned Binary Integers 0000 1111 0001 Turn x notches counterclockwise 0 1110 15 1 0010 to add x 14 2 1101 0011 13 3 15 1 14 2 13 0 3 Inside: Natural number 1100 12 4 0100 12 4 Outside: 4-bit encoding 11 5 11 5 10 6 1011 0101 9 8 7 10 6 1010 9 7 0110 Turn y notches 8 clockwise 1001 0111 to subtract y 1000 Figure 9.1 Schematic representation of 4-bit code for integers in [0, 15]. Mar. 2006 Computer Architecture, The Arithmetic/Logic Unit Slide 7 Representation Range and Overflow Overflow region max max Overflow region Numbers smaller Numbers larger than max than max Finite set of representable numbers Figu ...
Tìm kiếm theo từ khóa liên quan:
Bài giảng Computer architecture Kiến trúc máy tính Công nghệ máy tính Adderes and simple ALUs Multippliers and dividers Số học lôgicTài liệu liên quan:
-
67 trang 302 1 0
-
Giáo trình Kiến trúc máy tính và quản lý hệ thống máy tính: Phần 1 - Trường ĐH Thái Bình
119 trang 238 0 0 -
105 trang 207 0 0
-
84 trang 202 2 0
-
Giải thuật và cấu trúc dữ liệu
305 trang 163 0 0 -
Thuyết trình môn kiến trúc máy tính: CPU
20 trang 149 0 0 -
142 trang 147 0 0
-
Bài giảng Lắp ráp cài đặt máy tính 1: Bài 2 - Kiến trúc máy tính
56 trang 104 0 0 -
4 trang 99 0 0
-
Giáo trình kiến trúc máy tính - ĐH Cần Thơ
95 trang 87 1 0