Danh mục

Bài giảng đồ họa : Các phép biến đổi trong đồ họa hai chiều part 1

Số trang: 4      Loại file: pdf      Dung lượng: 63.02 KB      Lượt xem: 8      Lượt tải: 0    
Thư viện của tui

Phí lưu trữ: miễn phí Tải xuống file đầy đủ (4 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Bản chất của phép biến đổi hình học là thay đổi các mô tả về tọa độ của đối tượng, từ đó làm đối tượng thay đổi về hướng, kích thước, hình dạng. • Có hai quan điểm về phép biến đổi hình học, đó là:♦ Biến đổi đối tượng : thay đổi tọa độ của các điểm mô tả đối tượng theo một qui tắc nào đó. ♦ Biến đổi hệ tọa độ : tạo ra một hệ tọa độ mới và tất cả các điểm mô tả đối tượng sẽ được chuyển về hệ tọa độ mới....
Nội dung trích xuất từ tài liệu:
Bài giảng đồ họa : Các phép biến đổi trong đồ họa hai chiều part 1 ÑOÀ HOÏA MAÙY TÍNH Caùc pheùp bieán ñoåi trong ñoà hoïa hai chieàuDaãn nhaäp • Baûn chaát cuûa pheùp bieán ñoåi hình hoïc laø thay ñoåi caùc moâ taû veà toïa ñoä cuûa ñoái töôïng, töø ñoù laøm ñoái töôïng thay ñoåi veà höôùng, kích thöôùc, hình daïng. • Coù hai quan ñieåm veà pheùp bieán ñoåi hình hoïc, ñoù laø: ♦ Bieán ñoåi ñoái töôïng : thay ñoåi toïa ñoä cuûa caùc ñieåm moâ taû ñoái töôïng theo moät qui taéc naøo ñoù. ♦ Bieán ñoåi heä toïa ñoä : taïo ra moät heä toïa ñoä môùi vaø taát caû caùc ñieåm moâ taû ñoái töôïng seõ ñöôïc chuyeån veà heä toïa ñoä môùi. • Caùc pheùp bieán ñoåi hình hoïc cô sôû : tònh tieán, quay, bieán ñoåi tæ leä.Caùc pheùp bieán ñoåi hình hoïc cô sôû • Moät pheùp bieán ñoåi ñieåm laø moät aùnh xaï T : T : R2 → R2 P(x, y) a Q(x , y) • Hay T laø haøm soá T(x, y) theo hai bieán (x, y) :  x = f (x, y)   y = g (x, y) Döông Anh Ñöùc, Leâ Ñình Duy Caùc pheùp bieán ñoåi trong ñoà hoïa 2 chieàu 1/16 ÑOÀ HOÏA MAÙY TÍNH • Pheùp bieán ñoåi affine laø pheùp bieán ñoåi vôùi f (x, y) vaø g (x, y) laø caùc haøm tuyeán tính. Pheùp bieán ñoåi naøy coù daïng :  x = ax + cy + e , a, b, c, d, e, f ∈ R, ad − bc ≠ 0   y = bx + dy + f • Ta chæ khaûo saùt caùc pheùp bieán ñoåi affine, neân seõ duøng cuïm töø “pheùp bieán ñoåi” thay cho “pheùp bieán ñoåi affine”Pheùp tònh tieán • Pheùp tònh tieán duøng ñeå dòch chuyeån ñoái töôïng töø vò trí naøy sang vò trí khaùc. y y Q try (2,3) (4,3) P trx (6,1) (8,1) x x (a) (b) • Neáu goïi trx vaø try laàn löôït laø ñoä dôøi theo truïc hoaønh vaø truïc tung thì toïa ñoä cuûa ñieåm môùi Q(x , y) sau khi tònh tieán ñieåm P (x, y) seõ laø :  x = x + trx  ,  y = y + try(tr , tr ) ñöôïc goïi laø vector tònh tieán hay vector ñoä dôøi. x y Döông Anh Ñöùc, Leâ Ñình Duy Caùc pheùp bieán ñoåi trong ñoà hoïa 2 chieàu 2/16 ÑOÀ HOÏA MAÙY TÍNHPheùp bieán ñoåi tæ leä • Pheùp bieán ñoåi tæ leä laøm thay ñoåi kích thöôùc ñoái töôïng. Ñeå co hay giaõn toïa ñoä cuûa moät ñieåm P(x, y) theo truïc hoaønh vaø truïc tung laàn löôït laø s x vaø s y , ta nhaân s x vaø s y laàn löôït cho caùc toïa ñoä cuûa P.  x = s x .x  , s x vaø s y ñöôïc goïi laø caùc heä soá tæ leä.  y = s y . y • Khi caùc giaù trò s x , s y nhoû hôn 1, pheùp bieán ñoåi seõ thu nhoû ñoái töôïng, ngöôïc laïi khi caùc giaù trò naøy lôùn hôn 1, pheùp bieán ñoåi seõ phoùng lôùn ñoái töôïng. • Khi s x , s y baèng nhau, ta goïi ñoù laø pheùp ñoàng daïng (uniform scaling), pheùp ñoàng daïng laø pheùp bieán ñoåi baûo toaøn tính caân xöùng cuûa ñoái töôïng. y (2,3) (4,3) (5,1.5) (10,1.5) x • Taâm tæ leä laø ñieåm khoâng bò thay ñoåi qua pheùp bieán ñoåi tæ leä. • Nhaän xeùt raèng khi pheùp bieán ñoåi tæ leä thu nhoû ñoái töôïng, ñoái töôïng seõ ñöôïc dôøi veà gaàn goác toïa ñoä hôn, töông töï khi phoùng lôùn ñoái töôïng, ñoái töôïng seõ ñöôïc dòch chuyeån xa goác toïa ñoä hôn. Döông Anh Ñöùc, Leâ Ñình Duy Caùc pheùp bieán ñoåi trong ñoà hoïa 2 chieàu 3/16 ÑOÀ HOÏA MAÙY TÍNHPheùp quay • Pheùp quay laøm thay ñoåi höôùng cuûa ñoái töôïng. • Moät pheùp quay ñoøi hoûi phaûi coù taâm quay, goùc quay. Goùc quay döông thöôøng ñöôïc quy öôùc laø chieàu ngöôïc chieàu kim ñoàng hoà. Ta coù coâng thöùc bieán ñoåi cuûa pheùp quay ñieåm P (x, y) quanh goác toïa ñoä moät goùc α :  x = cos α .x − sin α . y   y = sin α .x + cos α . y y ...

Tài liệu được xem nhiều: