Bài giảng Học sâu và ứng dụng - Bài 3: Giới thiệu về mạng tích chập (Conv Neural Networks)
Số trang: 48
Loại file: pdf
Dung lượng: 0.00 B
Lượt xem: 28
Lượt tải: 0
Xem trước 5 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Bài giảng Học sâu và ứng dụng - Bài 3: Giới thiệu về mạng tích chập (Conv Neural Networks). Bài này cung cấp cho học viên những nội dung về: lịch sử CNNs; lớp tích chập; lớp gộp (pooling layer); lớp gộp max pooling; accuracy comparison;... Mời các bạn cùng tham khảo chi tiết nội dung bài giảng!
Nội dung trích xuất từ tài liệu:
Bài giảng Học sâu và ứng dụng - Bài 3: Giới thiệu về mạng tích chập (Conv Neural Networks) Chương 3 Giới thiệu về mạng tích chập Conv Neural Networks 2 Lịch sử CNNs • Ý tưởng CNNs xuất phát đầu tiên từ công trình của Fukushima năm 1980 3 Lịch sử CNNs • Năm 1998, LeCun áp dụng BackProp huấn luyện mạng CNNs cho bài toán nhận dạng văn bản 4 Lịch sử CNNs • Năm 2012, CNNs gây tiếng vang lớn khi vô địch cuộc thi ILSRC 2012, vượt xa phương pháp đứng thứ 2 theo cách tiếp cận thị giác máy tính truyền thống. 5 Lịch sử CNNs • Hiện nay CNNs ứng dụng khắp nơi, ví dụ trong bài toán phân loại ảnh, truy vấn ảnh 6 Lịch sử CNNs • Ứng dụng CNNs trong bài toán phát hiện đối tượng, phân đoạn ảnh 7 Lịch sử CNNs • Ứng dụng CNNs trong nhận dạng dáng người (human pose), trong trò chơi… 8 Lớp tích chập • Khác với nơ-ron kết nối đầy đủ, mỗi nơ-ron tích chập (filter) chỉ kết nối cục bộ với dữ liệu đầu vào • Nơ-ron tích chập trượt từ trái sang phải và từ trên xuống dưới khối dữ liệu đầu vào và tính toán để sinh ra một bản đồ kích hoạt (activation map) • Chiều sâu của nơ-ron tích chập bằng chiều sâu của khối dữ liệu đầu vào 9 Lớp tích chập … • Bước nhảy stride = 1 • Đầu vào kích thước 7x7, nơ-ron kích thước 3x3 • Đầu ra kích thước 5x5 10 Lớp tích chập • Bước nhảy stride = 2 • Đầu vào kích thước 7x7, nơ-ron kích thước 3x3 • Đầu ra kích thước 3x3 11 Lớp tích chập 12 Lớp tích chập • Để bảo toàn kích thước thường thêm viền bởi các số 0 (zero padding). • Ví dụ: đầu vào kích thước 7x7, nơ-ron kích thước 3x3, bước nhảy stride 1, padding viền độ rộng 1. • Khi đó kích thước đầu ra là 7x7 Lớp tích chập • Giả sử có thêm nơ-ron tích chập khác thì nó cũng hoạt động tương tự và sinh ra bản đồ kích hoạt thứ hai • Lưu ý trọng số của các nơ-ron tích chập là khác nhau 14 Lớp tích chập • Giả sử có 6 nơ-ron tích chập sẽ sinh ra 6 bản đồ kích hoạt • Các bản đồ kích hoạt ghép với nhau thành một “ảnh mới” 15 CNNs • Mạng nơ-ron tích chập là một dãy các lớp tích chập nối liên tiếp nhau xen kẽ bởi các hàm kích hoạt (ví dụ ReLU) 16 Lớp gộp (pooling layer) • Giúp giảm độ phân giải của khối dữ liệu để giảm bộ nhớ và khối lượng tính toán • Hoạt động độc lập trên từng bản đồ kích hoạt • Lớp gộp max pooling giúp mạng biểu diễn bất biến đối với các thay đổi tịnh tiến (translation invariance) hoặc biến dạng (deformation invariance) của dữ liệu đầu vào 17 Lớp gộp max pooling 18 CNNs 19 Một số mạng CNNs cơ bản • LeNet-5 • AlexNet • VGG • GoogleNet • ResNet 20
Nội dung trích xuất từ tài liệu:
Bài giảng Học sâu và ứng dụng - Bài 3: Giới thiệu về mạng tích chập (Conv Neural Networks) Chương 3 Giới thiệu về mạng tích chập Conv Neural Networks 2 Lịch sử CNNs • Ý tưởng CNNs xuất phát đầu tiên từ công trình của Fukushima năm 1980 3 Lịch sử CNNs • Năm 1998, LeCun áp dụng BackProp huấn luyện mạng CNNs cho bài toán nhận dạng văn bản 4 Lịch sử CNNs • Năm 2012, CNNs gây tiếng vang lớn khi vô địch cuộc thi ILSRC 2012, vượt xa phương pháp đứng thứ 2 theo cách tiếp cận thị giác máy tính truyền thống. 5 Lịch sử CNNs • Hiện nay CNNs ứng dụng khắp nơi, ví dụ trong bài toán phân loại ảnh, truy vấn ảnh 6 Lịch sử CNNs • Ứng dụng CNNs trong bài toán phát hiện đối tượng, phân đoạn ảnh 7 Lịch sử CNNs • Ứng dụng CNNs trong nhận dạng dáng người (human pose), trong trò chơi… 8 Lớp tích chập • Khác với nơ-ron kết nối đầy đủ, mỗi nơ-ron tích chập (filter) chỉ kết nối cục bộ với dữ liệu đầu vào • Nơ-ron tích chập trượt từ trái sang phải và từ trên xuống dưới khối dữ liệu đầu vào và tính toán để sinh ra một bản đồ kích hoạt (activation map) • Chiều sâu của nơ-ron tích chập bằng chiều sâu của khối dữ liệu đầu vào 9 Lớp tích chập … • Bước nhảy stride = 1 • Đầu vào kích thước 7x7, nơ-ron kích thước 3x3 • Đầu ra kích thước 5x5 10 Lớp tích chập • Bước nhảy stride = 2 • Đầu vào kích thước 7x7, nơ-ron kích thước 3x3 • Đầu ra kích thước 3x3 11 Lớp tích chập 12 Lớp tích chập • Để bảo toàn kích thước thường thêm viền bởi các số 0 (zero padding). • Ví dụ: đầu vào kích thước 7x7, nơ-ron kích thước 3x3, bước nhảy stride 1, padding viền độ rộng 1. • Khi đó kích thước đầu ra là 7x7 Lớp tích chập • Giả sử có thêm nơ-ron tích chập khác thì nó cũng hoạt động tương tự và sinh ra bản đồ kích hoạt thứ hai • Lưu ý trọng số của các nơ-ron tích chập là khác nhau 14 Lớp tích chập • Giả sử có 6 nơ-ron tích chập sẽ sinh ra 6 bản đồ kích hoạt • Các bản đồ kích hoạt ghép với nhau thành một “ảnh mới” 15 CNNs • Mạng nơ-ron tích chập là một dãy các lớp tích chập nối liên tiếp nhau xen kẽ bởi các hàm kích hoạt (ví dụ ReLU) 16 Lớp gộp (pooling layer) • Giúp giảm độ phân giải của khối dữ liệu để giảm bộ nhớ và khối lượng tính toán • Hoạt động độc lập trên từng bản đồ kích hoạt • Lớp gộp max pooling giúp mạng biểu diễn bất biến đối với các thay đổi tịnh tiến (translation invariance) hoặc biến dạng (deformation invariance) của dữ liệu đầu vào 17 Lớp gộp max pooling 18 CNNs 19 Một số mạng CNNs cơ bản • LeNet-5 • AlexNet • VGG • GoogleNet • ResNet 20
Tìm kiếm theo từ khóa liên quan:
Bài giảng Học sâu và ứng dụng Học sâu và ứng dụng Mạng tích chập Conv Neural Networks Lớp tích chập Lớp gộp max pooling Phép toán tích chậpGợi ý tài liệu liên quan:
-
Bài giảng Học sâu và ứng dụng - Bài 7: Một số ứng dụng học sâu trong thị giác máy (Phần 1)
64 trang 192 0 0 -
74 trang 145 0 0
-
Xử lý vi phạm vượt đèn đỏ và dừng đỗ sai dựa trên học sâu
5 trang 49 0 0 -
Tái tạo mô hình 3D của đối tượng từ ảnh phác thảo 2.5D
6 trang 25 0 0 -
Bài giảng Học sâu và ứng dụng - Bài 2: Giới thiệu về mạng nơ-ron
38 trang 24 0 0 -
Bài giảng Học sâu và ứng dụng - Bài 8: Một số ứng dụng học sâu trong thị giác máy (Phần 2)
46 trang 24 0 0 -
Bài giảng Học sâu và ứng dụng - Bài 4: Huấn luyện mạng nơ-ron (Phần 1)
46 trang 23 0 0 -
Bài giảng Học sâu và ứng dụng: Bài 1 - ĐH Bách khoa Hà Nội
34 trang 23 0 0 -
Liveness Detection và ứng dụng trong bài toán nhận diện khuôn mặt
4 trang 23 0 0 -
49 trang 20 0 0