Danh mục

Bài giảng Không gian véctơ - TS. Lê Xuân Đại

Số trang: 121      Loại file: pdf      Dung lượng: 665.98 KB      Lượt xem: 22      Lượt tải: 0    
Hoai.2512

Xem trước 10 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Bài giảng "Không gian véctơ" cung cấp cho người học các kiến thức: Cấu trúc không gian véctơ, sự phụ thuộc và độc lập tuyến tính, sự phụ thuộc tuyến tính và độc lập tuyến tính, cơ sở và số chiều của không gian véctơ, tọa độ của véctơ, chuyển cơ sở. Mời các bạn cùng tham khảo nội dung chi tiết.
Nội dung trích xuất từ tài liệu:
Bài giảng Không gian véctơ - TS. Lê Xuân Đại KHÔNG GIAN VÉCTƠ Bài giảng điện tử TS. Lê Xuân Đại Trường Đại học Bách Khoa TP HCM Khoa Khoa học ứng dụng, bộ môn Toán ứng dụng Email: ytkadai@hcmut.edu.vn TP. HCM — 2013.TS. Lê Xuân Đại (BK TPHCM) KHÔNG GIAN VÉCTƠ TP. HCM — 2013. 1 / 112Nội dung 1 Định nghĩa không gian véc-tơ 2 Sự phụ thuộc tuyến tính và độc lập tuyến tính 3 Cơ sở và số chiều của không gian véctơ 4 Hạng của một hệ véc tơ 5 Tọa độ của véctơ, ma trận chuyển cơ sở TS. Lê Xuân Đại (BK TPHCM) KHÔNG GIAN VÉCTƠ TP. HCM — 2013. 2 / 112 Cấu trúc không gian véctơ Định nghĩa không gian véctơSố thực Đa thức có bậc không lớn hơn n 1 +:R×R→R 1 + : Pn (x) × Pn (x) → Pn (x) (x, y ) → x + y (p(x), q(x)) → p(x) + q(x) 2 •:R→R 2 • : R × Pn (x) → Pn (x) (λ, x) → λ.x (λ, p(x)) → λ.p(x)Số phức 1 +:C×C→C (x, y ) → x + y 2 •:C→C KHÔNG GIAN VÉCTƠ (λ, x) → λ.xTS. Lê Xuân Đại (BK TPHCM) KHÔNG GIAN VÉCTƠ TP. HCM — 2013. 3 / 112 Cấu trúc không gian véctơ Định nghĩa không gian véctơVéc-tơ trong mặt phẳng 1 + : R2 × R2 → R2 (→ − x ,→ − y)→→ − x +→ − y −−→ −−→ −−→ −−→ (OM, ON) → OM + ON 2 • : R × R2 → R2 (λ, → −x ) → λ.→ − x −−→ −−→ (λ, OM) → λ.OMVéc-tơ trong không gian 1 + : R3 × R3 → R3 (→ − x ,→ − y)→→ − x +→ − y −−→ −−→ −−→ −−→ (OM, ON) → OM + ON KHÔNG GIAN VÉCTƠ 2 • : R × R3 → R3 (λ, → −x ) → λ.→ − x −−→ −−→ (λ, OM) → λ.OMTS. Lê Xuân Đại (BK TPHCM) KHÔNG GIAN VÉCTƠ TP. HCM — 2013. 4 / 112 Cấu trúc không gian véctơ Định nghĩa không gian véctơCho E 6= ∅ và trường K (R hoặc C) với 2 phép toán 1 +:E ×E →E 2 •:K ×E →E (x, y ) 7−→ x + y (λ, x) 7−→ λ.xsao cho thỏa mãn 8 tiên đề sau: ∀x, y , z ∈ E , ∀λ, µ ∈ K 1 x +y =y +x 5 (λ + µ)x = λx + µx 2 x +(y +z) = (x +y )+z 6 λ(x + y ) = λx + λy 3 ∃0 ∈ E : x + 0 = x 4 ∃(−x) ∈ E : 7 λ(µx) = (λ.µ)x x + (−x) = 0 8 1.x = xthì E được gọi là một K -không gian véctơ.(K-kgv) NếuK = R thì ta có không gian véctơ thực, nếu K = C thì tacó không gian véctơ phức.TS. Lê Xuân Đại (BK TPHCM) KHÔNG GIAN VÉCTƠ TP. HCM — 2013. 5 / 112 Cấu trúc không gian véctơ Ví dụVí dụ không gian véctơ Rn = {x = (x1, . . . , xn ), xi ∈ R, i = 1, n} + : Rn × R n → Rn , (x, y ) → x + y = (x1 + y1, . . . , xn + yn ) • : R × R n → Rn (λ, x) → (λx1, . . . , λxn ) TS. Lê Xuân Đại (BK TPHCM) KHÔNG GIAN VÉCTƠ TP. HCM — 2013. 6 / 112 Cấu trúc không gian véctơ Ví dụ Cn = {x = (x1, . . . , xn ), xi ∈ C, i = 1, n} + : Cn × C n → Cn , (x, y ) → x + y = (x1 + y1, . . . , xn + yn ) • : C × C n → Cn (λ, x) → (λx1, . . . , λxn )TS. Lê Xuân Đại (BK TPHCM) KHÔNG GIAN VÉCTƠ TP. HCM — 2013. 7 / 112 Cấu trúc không gian véctơ Ví dụ X 6= ∅, E − K − kgv , E X = {f : X → E } + : EX × EX → EX, (f , g ) → (f + g )(x) = f (x) + g (x), ∀x ∈ X • : K × EX → EX (λ, f ) → (λf )(x) = λf (x), ∀x ∈ X Mm×n (K ) + : Mm×n (K ) × Mm×n (K ) → Mm×n (K ), (A, B) → A + B = (aij + bij ) • : K × Mm×n (K ) → Mm×n (K ) (λ, A) → λA = (λaij )TS. Lê Xuân Đại (BK TPHCM) KHÔNG GI ...

Tài liệu được xem nhiều: