![Phân tích tư tưởng của nhân dân qua đoạn thơ: Những người vợ nhớ chồng… Những cuộc đời đã hóa sông núi ta trong Đất nước của Nguyễn Khoa Điềm](https://timtailieu.net/upload/document/136415/phan-tich-tu-tuong-cua-nhan-dan-qua-doan-tho-039-039-nhung-nguoi-vo-nho-chong-nhung-cuoc-doi-da-hoa-song-nui-ta-039-039-trong-dat-nuoc-cua-nguyen-khoa-136415.jpg)
Bài giảng Lý thuyết đồ thị: Chương 2 - TS. Lê Nhật Duy
Số trang: 26
Loại file: pdf
Dung lượng: 423.24 KB
Lượt xem: 27
Lượt tải: 0
Xem trước 3 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Bài giảng Lý thuyết đồ thị: Chương 2 Biểu diễn đồ thị, được biên soạn gồm các nội dung chính sau: Các cách biểu diễn đồ thị; Sự đẳng cấu của các đồ thị; Hướng dẫn cài đặt. Mời các bạn cùng tham khảo!
Nội dung trích xuất từ tài liệu:
Bài giảng Lý thuyết đồ thị: Chương 2 - TS. Lê Nhật Duy Chương 2: Biểu diễn đồ thị Nội dung I. Các cách biểu diễn đồ thị II. Sự đẳng cấu của các đồ thị III. Hướng dẫn cài đặt Chương 2 – Biểu diễn đồ thị 2 Lý thuyết đồ thị I. Các cách biểu diễn đồ thị Các cách biểu diễn đồ thị Ma trận kề Danh sách cạnh Danh sách kề Ma trận liên thuộc Ma trận trọng số Danh sách cung Chương 2 – Biểu diễn đồ thị 3 Lý thuyết đồ thị I.1. Ma trận kề (đơn đồ thị vô hướng) Định nghĩa Đơn đồ thị G = (V,E) với tập đỉnh V = {0,…,n-1}, tập cạnh E = {e0,e1,…em-1}. Ta gọi ma trận kề của G là A = {ai,j , i,j = 0,…,n-1}, với: ⎧ 0 , if ( i , j ) ∉ E ai, j = ⎨ ⎩ 1, if ( i , j ) ∈ E 0 1 2 3 4 0 0 1 1 0 1 1 1 0 1 0 1 2 1 1 0 0 0 3 0 0 0 0 0 4 1 1 0 0 0 Chương 2 – Biểu diễn đồ thị 4 I.1. Ma trận kề (đơn đồ thị có hướng) Định nghĩa Giống đơn đồ thị có hướng E là tập các cung ⎧ 0 , if ( i , j ) ∉ E ai, j = ⎨ ⎩ 1, if ( i , j ) ∈ E 0 1 2 3 4 0 0 0 1 0 1 1 1 0 0 0 0 2 0 1 0 1 0 3 0 0 0 0 1 4 0 1 0 0 0 Chương 2 – Biểu diễn đồ thị 5 I.1. Ma trận kề (Đa đồ thị) Định nghĩa E là tập các cạnh/cung Ai,j là số cạnh nối đỉnh i và đỉnh j 0 1 2 3 4 5 0 0 1 1 0 1 0 1 1 0 1 0 1 0 2 1 1 0 2 0 0 3 0 0 2 0 1 1 4 1 1 0 1 0 1 5 0 0 0 1 1 1 Chương 2 – Biểu diễn đồ thị 6 I.1. Ma trận kề (Đa đồ thị) Một số tính chất của ma trận kề Ma trận kề của đồ thị vô hướng là đối xứng a[i,j] = a[j,i]. Ngược lại, ma trận đối xứng (0,1), có đường chéo chính bằng 0, bậc n sẽ tương ứng với đơn đồ thị vô hướng n đỉnh. Nếu đồ thị vô hướng: Tổng dòng thứ i = Tổng cột thứ i = deg(i) Nếu đồ thị có hướng: Tổng dòng i = deg+(i), Tổng cột i = deg -(i) Ưu điểm và hạn chế của ma trận kề? Chương 2 – Biểu diễn đồ thị 7 I.2. Ma trận trọng số (đơn đồ thị) Định nghĩa Đơn đồ thị G = (V,E) với tập đỉnh V = {0,…,n-1}, tập cạnh E = {e0,e1,…em-1}. Ta gọi ma trận kề trọng số của G là • A = {ai,j , i,j = 0,…,n-1}, với: ⎧ b , if ( i , j ) ∉ E Ck là một giá trị nào đó được a i, j = ⎨ quy định trước (0, -1, ∞, -∞, ..) ⎩ c k , if ( i , j ) ∈ E 0 1 2 3 4 5 0 0 4 3 0 7 0 1 4 0 5 0 3 0 2 3 5 0 2 0 0 3 0 0 2 0 5 2 4 7 3 0 5 0 3 5 0 0 0 2 3 0 Chương 2 – Biểu diễn đồ thị 8 I.3. Danh sách cạnh Đối với các đồ thị thưa n đỉnh, m cạnh (m < 6n) người ta thường dùng cách biểu diễn danh sách cạnh để tiết kiệm không gian lưu trữ Lưu các cạnh e=(u, v) của đồ thị trong một danh sách Danh sách có thể được cài đặt bằng mảng 1 chiều hoặc danh sách liên kết. Cạnh Đầu 1 Đầu 2 0 0 2 1 0 1 2 0 4 3 1 2 4 1 4 5 2 3 6 3 4 7 3 5 8 4 5 Chương 2 – Biểu diễn đồ thị 9 I.3. Danh sách cạnh Cài đặt bằng mảng 1 chiều Cạnh Đầu Đầu 2 1 0 0 2 1 0 1 Cài đặt bằng danh sách liên kết 2 0 4 3 1 2 4 1 4 5 2 3 typde struct tagNode ...
Nội dung trích xuất từ tài liệu:
Bài giảng Lý thuyết đồ thị: Chương 2 - TS. Lê Nhật Duy Chương 2: Biểu diễn đồ thị Nội dung I. Các cách biểu diễn đồ thị II. Sự đẳng cấu của các đồ thị III. Hướng dẫn cài đặt Chương 2 – Biểu diễn đồ thị 2 Lý thuyết đồ thị I. Các cách biểu diễn đồ thị Các cách biểu diễn đồ thị Ma trận kề Danh sách cạnh Danh sách kề Ma trận liên thuộc Ma trận trọng số Danh sách cung Chương 2 – Biểu diễn đồ thị 3 Lý thuyết đồ thị I.1. Ma trận kề (đơn đồ thị vô hướng) Định nghĩa Đơn đồ thị G = (V,E) với tập đỉnh V = {0,…,n-1}, tập cạnh E = {e0,e1,…em-1}. Ta gọi ma trận kề của G là A = {ai,j , i,j = 0,…,n-1}, với: ⎧ 0 , if ( i , j ) ∉ E ai, j = ⎨ ⎩ 1, if ( i , j ) ∈ E 0 1 2 3 4 0 0 1 1 0 1 1 1 0 1 0 1 2 1 1 0 0 0 3 0 0 0 0 0 4 1 1 0 0 0 Chương 2 – Biểu diễn đồ thị 4 I.1. Ma trận kề (đơn đồ thị có hướng) Định nghĩa Giống đơn đồ thị có hướng E là tập các cung ⎧ 0 , if ( i , j ) ∉ E ai, j = ⎨ ⎩ 1, if ( i , j ) ∈ E 0 1 2 3 4 0 0 0 1 0 1 1 1 0 0 0 0 2 0 1 0 1 0 3 0 0 0 0 1 4 0 1 0 0 0 Chương 2 – Biểu diễn đồ thị 5 I.1. Ma trận kề (Đa đồ thị) Định nghĩa E là tập các cạnh/cung Ai,j là số cạnh nối đỉnh i và đỉnh j 0 1 2 3 4 5 0 0 1 1 0 1 0 1 1 0 1 0 1 0 2 1 1 0 2 0 0 3 0 0 2 0 1 1 4 1 1 0 1 0 1 5 0 0 0 1 1 1 Chương 2 – Biểu diễn đồ thị 6 I.1. Ma trận kề (Đa đồ thị) Một số tính chất của ma trận kề Ma trận kề của đồ thị vô hướng là đối xứng a[i,j] = a[j,i]. Ngược lại, ma trận đối xứng (0,1), có đường chéo chính bằng 0, bậc n sẽ tương ứng với đơn đồ thị vô hướng n đỉnh. Nếu đồ thị vô hướng: Tổng dòng thứ i = Tổng cột thứ i = deg(i) Nếu đồ thị có hướng: Tổng dòng i = deg+(i), Tổng cột i = deg -(i) Ưu điểm và hạn chế của ma trận kề? Chương 2 – Biểu diễn đồ thị 7 I.2. Ma trận trọng số (đơn đồ thị) Định nghĩa Đơn đồ thị G = (V,E) với tập đỉnh V = {0,…,n-1}, tập cạnh E = {e0,e1,…em-1}. Ta gọi ma trận kề trọng số của G là • A = {ai,j , i,j = 0,…,n-1}, với: ⎧ b , if ( i , j ) ∉ E Ck là một giá trị nào đó được a i, j = ⎨ quy định trước (0, -1, ∞, -∞, ..) ⎩ c k , if ( i , j ) ∈ E 0 1 2 3 4 5 0 0 4 3 0 7 0 1 4 0 5 0 3 0 2 3 5 0 2 0 0 3 0 0 2 0 5 2 4 7 3 0 5 0 3 5 0 0 0 2 3 0 Chương 2 – Biểu diễn đồ thị 8 I.3. Danh sách cạnh Đối với các đồ thị thưa n đỉnh, m cạnh (m < 6n) người ta thường dùng cách biểu diễn danh sách cạnh để tiết kiệm không gian lưu trữ Lưu các cạnh e=(u, v) của đồ thị trong một danh sách Danh sách có thể được cài đặt bằng mảng 1 chiều hoặc danh sách liên kết. Cạnh Đầu 1 Đầu 2 0 0 2 1 0 1 2 0 4 3 1 2 4 1 4 5 2 3 6 3 4 7 3 5 8 4 5 Chương 2 – Biểu diễn đồ thị 9 I.3. Danh sách cạnh Cài đặt bằng mảng 1 chiều Cạnh Đầu Đầu 2 1 0 0 2 1 0 1 Cài đặt bằng danh sách liên kết 2 0 4 3 1 2 4 1 4 5 2 3 typde struct tagNode ...
Tìm kiếm theo từ khóa liên quan:
Bài giảng Lý thuyết đồ thị Lý thuyết đồ thị Biểu diễn đồ thị Sự đẳng cấu của các đồ thị Cách biểu diễn đồ thị Ma trận trọng sốTài liệu liên quan:
-
Đề cương chi tiết học phần Lý thuyết đồ thị (Graph Theory)
13 trang 233 0 0 -
Bài giảng Cấu trúc dữ liệu và thuật toán: Chương 7 - Nguyễn Khánh Phương
214 trang 163 0 0 -
Bài giảng Lý thuyết đồ thị: Chương 3 - Các thuật toán tìm kiếm trên đồ thị
18 trang 129 0 0 -
Bài giảng Lý thuyết đồ thị - Bài 1: Đại cương về đồ thị
39 trang 123 0 0 -
Giáo trình Lý thuyết đồ thị: Phần 1 - PGS. Nguyễn Cam, PTS. Chu Đức Khánh
98 trang 93 0 0 -
Bài giảng Toán rời rạc: Chương 5 - Nguyễn Quỳnh Diệp
84 trang 79 0 0 -
Một số đánh giá hình học mạng lưới tàu điện đô thị Hà Nội theo lý thuyết đồ thị
9 trang 74 0 0 -
Bài giảng Lý thuyết đồ thị: Chương 1 - Tôn Quang Toại
37 trang 50 0 0 -
Chuyên đề Toán 11 - Cùng khám phá
90 trang 48 0 0 -
Giáo trình Toán rời rạc và lý thuyết đô thị
226 trang 47 0 0