Danh mục

Bài giảng môn học Kinh tế lượng - Chương 5: Đa cộng tuyến

Số trang: 31      Loại file: ppt      Dung lượng: 1.50 MB      Lượt xem: 11      Lượt tải: 0    
tailieu_vip

Xem trước 4 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Mục tiêu của chương này giúp người học nắm bắt các kiến thức về bản chất của đa cộng tuyến, ước lượng trong trường hợp có đa cộng tuyến, hậu quả của đa cộng tuyến, phát hiện đa cộng tuyến và các biện pháp khắc phục.
Nội dung trích xuất từ tài liệu:
Bài giảng môn học Kinh tế lượng - Chương 5: Đa cộng tuyếnChương5:Đacộngtuyến  Bảnchấtcủađacộngtuyến  Ướclượngtrongtrườnghợpcóđacộng tuyến  Hậuquảcủađacộngtuyến  Pháthiệnđacộngtuyến  Cácbiệnphápkhắcphục BảnchấtcủađacộngtuyếnĐacộngtuyếnlàgì?RagnarFrisch:Đacộngtuyếncónghĩalàsự tồntạimốiquanhệtuyếntính“hoànhảo” hoặcchínhxácgiữamộtsốhoặctấtcả cácbiếngiảithíchtrongmộtmôhìnhhồi qui.  Xéthàmhồiquituyếntínhk1biếnđộclập: Yi= 1+ 2X2i+ 3X3i+…+ kXki+UiNếutồntạicácsố 2, 3,…… ksaocho: 2 X2i+ 3X3i+……+ kXki=0Với i(i=2,3,k…)khôngđồngthờibằng khôngthìgiữacácbiếnXi(i=2,3,…k)xảy rahiệntượngđacộngtuyếnhoànhảo.Nóicáchkháclàxảyratrườnghợpmộtbiến giảithíchnàođóđượcbiểudiễndướidạng mộttổhợptuyếntínhcủacácbiếncònlại. Nếu 2X2i+ 3X3i+……+ kXki+vi=0,Vớivilàsaisốngẫunhiênthìtacóhiệntượng đacộngtuyếnkhônghoànhảogiữacác biếngiảithích.Nóicáchkháclàmộtbiếngiảithíchnàođócó tươngquanvớimộtsốbiếngiảithíchkhác. Vídụ X2 10 15 18 24 30 X3 50 75 90 120 150 X *3 52 75 97 129 152X3i=5X2i,vìvậycócộngtuyếnhoànhảogiữaX2 vàX3;r23=1X2vàX3*khôngcócộngtuyếnhoànhảo,nhưng haibiếnnàycótươngquanchặtchẽ. Lưuý Giảđịnhvềsựđacộngtuyếnliênquanđếnmối quanhệtuyếntínhgiữacácbiếnXi,vàkhôngđề cậpđếncácmốiquanhệphituyếntính. Xemxétmôhình: Yi= 0+ 1Xi+ 2Xi2+ 3Xi3+ui,RõràngXi2vàXi3cómốiquanhệhàmsốvớiXi nhưngphituyếntínhnênkhôngviphạmgiảđịnh vềđacộngtuyến. Minhhọabằnghìnhảnh Ướclượngtrongtrườnghợpcóđacộng tuyến1.Trườnghợpcóđacộngtuyếnhoànhảo Trườnghợpđacộngtuyếnhoànhảo,các hệsốhồiquikhôngxácđịnhvàcácsaisố chuẩncủachúnglàvôhạn. Xétmôhìnhhồiqui3biếndướidạngsau: Yi= 2X2i+ 3X3i+ei giảsửX3i= X2i,môhìnhtrêncóthểđược biếnđổithành: Yi=( 2+ 3)X2i+ei= 0X2i+ei  Chúng ta có thể ước lượng được 0 nhưng không thểtáchriêngđược 2và 3 Như vậy, trong trường hợp đa cộng tuyến hoàn hảo,khôngthểcólờigiảiduynhấtchocáchệsố hồiquiriêng, i. Trong trường hợp đa cộng tuyến hoàn hảo, phươngsaivàsaisốchuẩncủa 2và 3làvôhạn. Ước lượng của 2 trong hàm hồi quy 3 biến như sau:  GiảsửX3i= X2i: Cáchệsốướclượngkhôngxácđịnh:chúngtakhôngtách rờitácđộngcủatừngbiếnXilênYdokhôngthểgiảđịnh X2thayđổitrongkhiX3khôngđổi. Ướclượngtrongtrườnghợpcóđacộng tuyến2.Trườnghợpcóđacộngtuyếnkhônghoàn hảo Đacộngtuyếnhoànhảothườngkhôngxảy ratrongthựctế. Xétmôhìnhhồiqui3biếndướidạngsau: yi= 2x2i+ 3x3i+ei Giảđịnhx3i= x2i+vi Với 0vàvilàsaisốngẫunhiên. Trongtrườnghợpnày,cáchệsốhồiqui 2 và 3cóthểướclượngđược: Ướclượngtrongtrườnghợpđacộngtuyếnkhônghoànhảo Tacóthểướclượngđượccác này nhưngs.e.sẽrấtlớn. HậuquảcủađacộngtuyếnNếucócộngtuyếngầnhoànhảo: CácướclượngvẫnBLUE,nhưng: Phươngsaivàhiệpphươngsaicủacác ướclượngOLSlớn. r23làhệsố tươngquan giữaX2vàX3. Khir23 1,các giátrịtrên HậuquảcủađacộngtuyếnNếucócộngtuyếngầnhoànhảo:2. Khoảngtincậyrộnghơn.khoảngtincậycủa 2và 3(vớiđộtincậy1– )là: ^ ^ 2= t /2se(); 2 2 ^ ^ 3= t /2se(); 3 3trongđó:^ ^ se()= 2 2 2 se()= 3 2 2 (1 r ) 23 x ...

Tài liệu được xem nhiều: