Danh mục

Bài giảng Nhập môn trí tuệ nhân tạo: Chương 4 - Văn Thế Thành

Số trang: 16      Loại file: pdf      Dung lượng: 323.66 KB      Lượt xem: 15      Lượt tải: 0    
tailieu_vip

Phí tải xuống: 2,000 VND Tải xuống file đầy đủ (16 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Bài giảng "Nhập môn trí tuệ nhân tạo - Chương 4: Một số ví dụ về máy học" giới thiệu các kiến thức cơ bản về máy học, một số ví dụ về máy học, học bằng cách xây dựng cây định danh. Mời các bạn cùng tham khảo nội dung chi tiết
Nội dung trích xuất từ tài liệu:
Bài giảng Nhập môn trí tuệ nhân tạo: Chương 4 - Văn Thế Thành 2/19/2014 NHẬP MÔN TRÍ TUỆ NHÂN TẠO CHƯƠNG 4: MỘT SỐ VÍ DỤ VỀ MÁY HỌC 1 1. GIỚI THIỆU Một số phương pháp máy học để tiếp thu tri thức hay tạo ra tri thức  Học vẹt  Học cách đề xuất  Học bằng cách thu thập các trường hợp  Học bằng cách xây dựng cây định danh  Học không giám giám sát và bài tóm gom nhóm dữ liệu  Học giám sát và bài toán phân lớp dữ liệu 2 1 2/19/2014 1. GIỚI THIỆU (tt) Học vẹt  Hệ tiếp nhận các khẳng định của các quyết định đúng. Khi hệ tạo ra một quyết định không đúng, hệ sẽ đưa ra các luật hay quan hệ đúng mà hệ đã sử dụng. Hình thức học vẹt nhằm cho phép chuyên gia cung cấp tri thức theo kiểu tương tác. Học bằng cách chỉ dẫn  Thay vì đưa ra một luật cụ thể cần áp dụng vào tình huống cho trước, hệ thống sẽ được cung cấp bằng các chỉ dẫn tổng quát.  Ví dụ: gas hầu như bị thoát ra từ van thay vì thoát ra từ ống dẫn. Hệ thống phải tự mình đề ra cách biến đổi từ trừu tượng đến các luật khả dụng. 3 1. GIỚI THIỆU (tt) Học bằng qui nạp  Hệ thống được cung cấp một tập các ví dụ và kết luận được rút ra từ từng ví dụ. Hệ liên tục lọc các luật và quan hệ nhằm xử lý từng ví dụ mới. Học bằng tương tự  Hệ thống được cung cấp đáp ứng đúng cho các tác vụ tương tự nhưng không giống nhau. Hệ thống cần làm thích ứng đáp ứng trước đó nhằm tạo ra một luật mới có khả năng áp dụng cho tình huống mới. 4 2 2/19/2014 1. GIỚI THIỆU (tt) Học dựa trên giải thích  Hệ thống phân tích tập các lời giải ví dụ ( và kết quả) nhằm ấn định khả năng đúng hoặc sai và tạo ra các giải thích dùng để hướng dẫn cách giải bài toán trong tương lai. Học dựa trên tình huống  Bấy kỳ tính huống nào được hệ thống lập luận đều được lưu trữ cùng với kết quả cho dù đúng hay sai. Khi gằp tình hướng mới, hệ thống sẽ làm thích nghi hành vi đã lưu trữ với tình huống mới. Khám phá hay học không giám sát  Thay vì có mục tiêu tường minh, hệ khám phá liên tục tìm kiếm các mẫu và quan hệ trong dữ liệu nhập. Các ví dụ về học không giám sát bao gồm gom cụm dữ liệu, học để nhận dạng các đặc tính cơ bản như cạnh từ các điểm ảnh. 5 2. Một số ví dụ: Học qua logic: Bongard (1970) là người đầu tiên ứng dụng các toán tử logic để học và nhận dạng các đối tượng hình ảnh. Ý tưởng: Tìm quan hệ đơn giản nhất trong số các quan hệ có thể sử dụng để học và nhận dạng các hình ảnh. 6 3 2/19/2014 2. Một số ví dụ (tt) Lôùp A Lôùp B Chúng ta có thể quan sát thấy các hình vẽ thuộc lớp A có 3 vòng trắng luôn luôn nằm trên một đường thẳng. 7 2. Một số ví dụ (tt) Vấn đề đặt ra: -Tìm quan hệ đơn giản nhất có thể phân biệt được các hình ảnh. Bongard đã dùng bảng logic “mô tả – quan hệ” để dẫn xuất ra các mệnh đề logic: φ = ∨(ϕ ∧ ϕ ∧ ... ∧ ϕn ) 1 2 φ có thể dùng để phân biệt 2 lớp E và E’ nếu φ(E) và φ(E’) đối ngẫu nhau. 8 4 2/19/2014 2. Một số ví dụ (tt) P1 P2 P3 P4 P5 1 2 3 4 5 6 7 8 9 10 9 2. Một số ví dụ (tt) Các đối tượng trong mẫu: P1 P2 P3 P4 P5 1 1 1 1 1 0 P1 P2 P3 P4 P5 2 1 0 0 1 0 P1 P2 P3 P4 P5 3 0 1 0 0 1 P1 P2 P3 P4 P5 4 0 1 0 0 1 P1 P2 P3 P4 P5 5 0 1 0 1 0 ⇒ P1 P2 P3 P4 P5 6 1 1 0 1 0 P1 P2 P3 P4 P5 7 1 1 0 0 0 P1 P2 P3 P4 P5 8 1 0 0 1 0 P1 P2 P3 P4 P5 9 0 0 0 1 0 P1 P2 P3 P4 P5 10 1 1 0 0 0 P1 P2 P3 P4 P5 10 5 2/19/2014 2. Một số ví dụ (tt) Sau khi tính tổng và rút gọn lại được: P1 .P2 + P1 .(P2 .P3 + P2 .P3 )  P1.P2 Khoâng coù thì phaûi coù hình (3,4,5)  x ∈ ϕ( A)  P1.P2 .P3 Coù thì phaûi coù hình vaø hình (1)   P1.P2 .P3 Coù thì khoâng coù hình vaø hình (1) ...

Tài liệu được xem nhiều:

Gợi ý tài liệu liên quan: