Bài giảng Phương pháp nghiên cứu khoa học - Chương 6: Chọn mẫu
Số trang: 30
Loại file: pdf
Dung lượng: 7.27 MB
Lượt xem: 20
Lượt tải: 0
Xem trước 3 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Bài giảng Phương pháp nghiên cứu khoa học - Chương 6: Chọn mẫu nhằm thảo luận về 3 vấn đề chính như sau: tại sao lại lấy mẫu? Các khái niệm cơ bản, chọn mẫu xác suất và chọn mẫu phi xác suất, xác định kích thước mẫu. Bài giảng hữu ích cho sinh viên đang học môn Phương pháp nghiên cứu khoa học.
Nội dung trích xuất từ tài liệu:
Bài giảng Phương pháp nghiên cứu khoa học - Chương 6: Chọn mẫu Chương 6: Chọn mẫu Chương này sẽ tập trung thảo luận 3 vấn đề chính sau đây: 6.1-Tại sao lại lấy mẫu? Các khái niệm cơ bản 6.2-Chọn mẫu xác suất và chọn mẫu phi xác suất 6.3-Xác định kích thước mẫu 6.1-Tại sao lại lấy mẫu? Các khái niệm cơ bản Trong một cuộc bầu cử, chỉ một phần nhỏ cử tri được hỏi về các ý định bỏ phiếu của họ, ngay cả khi sự quan tâm cuối cùng của người thăm dò là ở việc đánh giá kết quả lựa chọn cuối cùng hoàn tất về những phiếu hợp lệ ủng hộ Sử dụng thuật ngữ thống kê, mỗi cử tri được gọi là đơn vị, các cử tri thực tế được thăm dò được gọi là mẫu và tập hợp toàn bộ những người hợp lệ cho bỏ phiếu được gọi là tổng thể (tổng số) (population). 6.1-Tại sao lại lấy mẫu? Các khái niệm cơ bản (tt) Sự lưa chọn các ứng cử viên trong bầu cử tổng thống có thể được xem xét như những giá trị của biến “ứng cử” Nó sẽ là đúng đắn, nhưng không thông dụng, để gọi rằng ứng cử viên nhận được số lớn các phiếu bầu trong tổng thể (tổng số) là một tham số Toàn bộ quá trình để có được kết quả bằng cách này được gọi là chọn mẫu. 6.1-Tại sao lại lấy mẫu? Các khái niệm cơ bản (tt) Trong điều tra mức sống dân cư hàng năm, Mỗi hộ trên địa bàn dân cư là đơn vị hộ Nếu tiến hành điều tra toàn bộ số hộ sẽ rất tốn kém. Vì vậy thường là điều tra phỏng vấn tập hợp nhỏ hơn số tổng, tập hợp nhỏ này được gọi là mẫu Số lượng đơn vị hộ trong mẫu gọi là cỡ hay kích thước mẫu và thường được ký hiệu là n, tổng số hộ dân cư thường ký hiệu là N. 6.2-Chọn mẫu xác suất và chọn mẫu phi xác suất Thiết kế chọn mẫu có thể chia thành hai loại: thiết kế chọn mẫu xác suất và thiết kế chọn mẫu phi xác suất Chọn mẫu phi xác suất là chọn theo chỉ định chủ quan của người nghiên cứu Một số chọn mẫu phi chính thức bao gồm: (1) chọn mẫu thuận tiện; (2) chọn mẫu phán đóan; và (3) chọn mẫu chỉ định Chọn mẫu thuận tiện Chọn mẫu thuận tiện, không cần chú ý đến tính đại diện mà chỉ chú ý đến tính thuận tiện cho người nghiên cứu. Chẳng hạn chúng ta có thể phỏng vấn giám đốc kinh doanh mà chúng ta quen biết Chọn mẫu phán đoán Chọn mẫu phán đoán là sự phán đoán của người nghiên cứu về các nhóm đại diện để chọn số đơn vị đại diện trong tổng số của các nhóm phán đoán Đơn giản là chúng ta cố gắng để chọn số đối tượng mà chúng ta nghĩ rằng số đối tượng đó có thể đại diện cho tổng thể Thí dụ, để nghiên cứu 3 lọai doanh nghiệp-khách hàng có quy mô doanh nghiệp theo mức lớn, vừa và nhỏ, ngườiø nghiên cứu sẽ chọn ra 3 nhóm doanh nghiệp -khách hàng và phán đóan rằng đó là 3 nhóm đại diện cho đối tượng khách hàng tương ứng với 3 lọai quy mô doanh nghiệp lớn, vừa và nhỏ Chọn mẫu chỉ định Chọn mẫu chỉ định là lấy theo tỷ lệ gần đúng của các nhóm đại diện trong tổng thể Chúng ta có thể tin chắc rằng có một số phân lọai các nhóm đối tượng nào đó, chẳng hạn như các công ty nhỏ, các công ty trung bình và các công ty lớn được chọn làm đại diện theo số mẫu gần đúng với cùng một tỷ lệ mà nó chiếm trong tổng thể Thí dụ, tổng các đối tượng nghiên cứu là 1.000 công ty, trong đó có 600 công ty nhỏ, 300 công ty trung bình và 100 công ty lớn. Với số chọn mẫu chỉ định là 10% trên tổng thể, như vậy số công ty nhỏ được chọn sẽ là 60 công ty, công ty trung bình là 30 và công ty lớn là 10 Chọn mẫu phi xác suất (tt) Chọn mẫu phi xác suất là dễ phác thảo và thực hiện, nhưng có thể cho kết quả sai lệch bất chấp sự phán đoán của chúng ta như thế nào, nếu chúng không đại diện cho tổng thể Hạn chế chính của chọn mẫu phi xác suất là chọn mẫu này không đưa ra cơ sở để đánh giá quy mô giao động của mẫu và sai số ước lượng Chọn mẫu phi xác suất có thể áp dụng cho nghiên cứu sơ bộ hay điều tra thử, điều tra làm rõ cơ sở các giả thuyết…. Chọn mẫu xác suất Chọn mẫu xác suất là dựa vào lý thuyết xác suất để lấy mẫu ngẫu nhiên Có một số cách lấy mẫu ngẫu nhiên đó là: (1) lấy mẫu ngẫu nhiên đơn thuần; (2) lấy mẫu ngẫu nhiên hệ thống, và (3) lấy mẫu ngẫu nhiên phân tầng…. Lấy mẫu ngẫu nhiên đơn thuần Lấy mẫu ngẫu nhiên đơn thuần là cách lấy mẫu mà mọi đơn vị phần tử trong tổng thể đều có cơ hội ngang nhau xuất hiện trong mẫu Thí dụ: chúng ta có thể đánh số các phần tử của tổng thể, tương ứng với mỗi số đã được ấn định cho từng phần tử là một “nhãn hiệu”, sau đó ta xáo trộn các nhãn hiệu và rút ngẫu nhiên theo số lượng đã định sẽ cho ta một chọn mẫu ngẫu nhiên. THÍ DỤ CHỌN MẪU NGẪU NHIÊN ĐƠN THUẦN Chúng ta cũng có thể áp dụng phương pháp tra bảng số ngẫu nhiên-là một bảng liệt kê sẵn các con số ngẫu nhiên và chương trình máy tính. Cách sử dụng bảng số ngẫu nhiên như sau: (1) Xác định số cột số sẽ sử dụng tương ứng với số chữ số của tổng thể cần nghiên cứu. Thí dụ tổng thể nghiên cứu N=900 công ty, khi đó số cột chữ số sử dụng là 3 cột, nếu tổng thể nghiên cứu là 1500 công ty, khi đó số cột chữ số sử dụng sẽ là 4 cột; THÍ DỤ CHỌN MẪU NGẪU NHIÊN ĐƠN THUẦN (tt) (2) Xaùc ñònh con soá seõ ñöôïc choïn laøm phaàn töû maãu, con soá ñoù phaûi lôùn hôn 0 vaø nhoû hôn toång theå N (trong thí duï cuûa chuùng ta laø 900 hoaëc 1500, töùc con soá thöù töï söû duïng cho caùc phaàn töû seõ töø 1 ñeán 900 hoaëc töø 1 ñeán 1500); (3) Soá löôïng phaàn töû ñöôïc choïn baèng kích thöôùc maãu. Neáu kích thöôùc maãu n baèng 10% toång theå, theo thí duï cuûa chuùng ta n seõ laø 90 hoaëc 150 coâng ty; THÍ DỤ CHỌN MẪU NGẪU NHIÊN ĐƠN TH ...
Nội dung trích xuất từ tài liệu:
Bài giảng Phương pháp nghiên cứu khoa học - Chương 6: Chọn mẫu Chương 6: Chọn mẫu Chương này sẽ tập trung thảo luận 3 vấn đề chính sau đây: 6.1-Tại sao lại lấy mẫu? Các khái niệm cơ bản 6.2-Chọn mẫu xác suất và chọn mẫu phi xác suất 6.3-Xác định kích thước mẫu 6.1-Tại sao lại lấy mẫu? Các khái niệm cơ bản Trong một cuộc bầu cử, chỉ một phần nhỏ cử tri được hỏi về các ý định bỏ phiếu của họ, ngay cả khi sự quan tâm cuối cùng của người thăm dò là ở việc đánh giá kết quả lựa chọn cuối cùng hoàn tất về những phiếu hợp lệ ủng hộ Sử dụng thuật ngữ thống kê, mỗi cử tri được gọi là đơn vị, các cử tri thực tế được thăm dò được gọi là mẫu và tập hợp toàn bộ những người hợp lệ cho bỏ phiếu được gọi là tổng thể (tổng số) (population). 6.1-Tại sao lại lấy mẫu? Các khái niệm cơ bản (tt) Sự lưa chọn các ứng cử viên trong bầu cử tổng thống có thể được xem xét như những giá trị của biến “ứng cử” Nó sẽ là đúng đắn, nhưng không thông dụng, để gọi rằng ứng cử viên nhận được số lớn các phiếu bầu trong tổng thể (tổng số) là một tham số Toàn bộ quá trình để có được kết quả bằng cách này được gọi là chọn mẫu. 6.1-Tại sao lại lấy mẫu? Các khái niệm cơ bản (tt) Trong điều tra mức sống dân cư hàng năm, Mỗi hộ trên địa bàn dân cư là đơn vị hộ Nếu tiến hành điều tra toàn bộ số hộ sẽ rất tốn kém. Vì vậy thường là điều tra phỏng vấn tập hợp nhỏ hơn số tổng, tập hợp nhỏ này được gọi là mẫu Số lượng đơn vị hộ trong mẫu gọi là cỡ hay kích thước mẫu và thường được ký hiệu là n, tổng số hộ dân cư thường ký hiệu là N. 6.2-Chọn mẫu xác suất và chọn mẫu phi xác suất Thiết kế chọn mẫu có thể chia thành hai loại: thiết kế chọn mẫu xác suất và thiết kế chọn mẫu phi xác suất Chọn mẫu phi xác suất là chọn theo chỉ định chủ quan của người nghiên cứu Một số chọn mẫu phi chính thức bao gồm: (1) chọn mẫu thuận tiện; (2) chọn mẫu phán đóan; và (3) chọn mẫu chỉ định Chọn mẫu thuận tiện Chọn mẫu thuận tiện, không cần chú ý đến tính đại diện mà chỉ chú ý đến tính thuận tiện cho người nghiên cứu. Chẳng hạn chúng ta có thể phỏng vấn giám đốc kinh doanh mà chúng ta quen biết Chọn mẫu phán đoán Chọn mẫu phán đoán là sự phán đoán của người nghiên cứu về các nhóm đại diện để chọn số đơn vị đại diện trong tổng số của các nhóm phán đoán Đơn giản là chúng ta cố gắng để chọn số đối tượng mà chúng ta nghĩ rằng số đối tượng đó có thể đại diện cho tổng thể Thí dụ, để nghiên cứu 3 lọai doanh nghiệp-khách hàng có quy mô doanh nghiệp theo mức lớn, vừa và nhỏ, ngườiø nghiên cứu sẽ chọn ra 3 nhóm doanh nghiệp -khách hàng và phán đóan rằng đó là 3 nhóm đại diện cho đối tượng khách hàng tương ứng với 3 lọai quy mô doanh nghiệp lớn, vừa và nhỏ Chọn mẫu chỉ định Chọn mẫu chỉ định là lấy theo tỷ lệ gần đúng của các nhóm đại diện trong tổng thể Chúng ta có thể tin chắc rằng có một số phân lọai các nhóm đối tượng nào đó, chẳng hạn như các công ty nhỏ, các công ty trung bình và các công ty lớn được chọn làm đại diện theo số mẫu gần đúng với cùng một tỷ lệ mà nó chiếm trong tổng thể Thí dụ, tổng các đối tượng nghiên cứu là 1.000 công ty, trong đó có 600 công ty nhỏ, 300 công ty trung bình và 100 công ty lớn. Với số chọn mẫu chỉ định là 10% trên tổng thể, như vậy số công ty nhỏ được chọn sẽ là 60 công ty, công ty trung bình là 30 và công ty lớn là 10 Chọn mẫu phi xác suất (tt) Chọn mẫu phi xác suất là dễ phác thảo và thực hiện, nhưng có thể cho kết quả sai lệch bất chấp sự phán đoán của chúng ta như thế nào, nếu chúng không đại diện cho tổng thể Hạn chế chính của chọn mẫu phi xác suất là chọn mẫu này không đưa ra cơ sở để đánh giá quy mô giao động của mẫu và sai số ước lượng Chọn mẫu phi xác suất có thể áp dụng cho nghiên cứu sơ bộ hay điều tra thử, điều tra làm rõ cơ sở các giả thuyết…. Chọn mẫu xác suất Chọn mẫu xác suất là dựa vào lý thuyết xác suất để lấy mẫu ngẫu nhiên Có một số cách lấy mẫu ngẫu nhiên đó là: (1) lấy mẫu ngẫu nhiên đơn thuần; (2) lấy mẫu ngẫu nhiên hệ thống, và (3) lấy mẫu ngẫu nhiên phân tầng…. Lấy mẫu ngẫu nhiên đơn thuần Lấy mẫu ngẫu nhiên đơn thuần là cách lấy mẫu mà mọi đơn vị phần tử trong tổng thể đều có cơ hội ngang nhau xuất hiện trong mẫu Thí dụ: chúng ta có thể đánh số các phần tử của tổng thể, tương ứng với mỗi số đã được ấn định cho từng phần tử là một “nhãn hiệu”, sau đó ta xáo trộn các nhãn hiệu và rút ngẫu nhiên theo số lượng đã định sẽ cho ta một chọn mẫu ngẫu nhiên. THÍ DỤ CHỌN MẪU NGẪU NHIÊN ĐƠN THUẦN Chúng ta cũng có thể áp dụng phương pháp tra bảng số ngẫu nhiên-là một bảng liệt kê sẵn các con số ngẫu nhiên và chương trình máy tính. Cách sử dụng bảng số ngẫu nhiên như sau: (1) Xác định số cột số sẽ sử dụng tương ứng với số chữ số của tổng thể cần nghiên cứu. Thí dụ tổng thể nghiên cứu N=900 công ty, khi đó số cột chữ số sử dụng là 3 cột, nếu tổng thể nghiên cứu là 1500 công ty, khi đó số cột chữ số sử dụng sẽ là 4 cột; THÍ DỤ CHỌN MẪU NGẪU NHIÊN ĐƠN THUẦN (tt) (2) Xaùc ñònh con soá seõ ñöôïc choïn laøm phaàn töû maãu, con soá ñoù phaûi lôùn hôn 0 vaø nhoû hôn toång theå N (trong thí duï cuûa chuùng ta laø 900 hoaëc 1500, töùc con soá thöù töï söû duïng cho caùc phaàn töû seõ töø 1 ñeán 900 hoaëc töø 1 ñeán 1500); (3) Soá löôïng phaàn töû ñöôïc choïn baèng kích thöôùc maãu. Neáu kích thöôùc maãu n baèng 10% toång theå, theo thí duï cuûa chuùng ta n seõ laø 90 hoaëc 150 coâng ty; THÍ DỤ CHỌN MẪU NGẪU NHIÊN ĐƠN TH ...
Tìm kiếm theo từ khóa liên quan:
Phương pháp chọn mẫu Chọn mẫu phi xác suất Chọn mẫu xác suất Phương pháp nghiên cứu khoa học Bài giảng phương pháp nghiên cứu khoa học Nghiên cứu khoa họcTài liệu liên quan:
-
Đề tài nghiên cứu khoa học: Kỹ năng quản lý thời gian của sinh viên trường Đại học Nội vụ Hà Nội
80 trang 1556 4 0 -
Tiểu luận: Phương pháp Nghiên cứu Khoa học trong kinh doanh
27 trang 497 0 0 -
57 trang 342 0 0
-
33 trang 334 0 0
-
Đề cương bài giảng Phương pháp nghiên cứu khoa học - Trường Đại học Công nghiệp dệt may Hà Nội
74 trang 275 0 0 -
Tiểu luận môn Phương Pháp Nghiên Cứu Khoa Học Thiên văn vô tuyến
105 trang 274 0 0 -
95 trang 270 1 0
-
Phương pháp nghiên cứu trong kinh doanh
82 trang 270 0 0 -
29 trang 230 0 0
-
Tóm tắt luận án tiến sỹ Một số vấn đề tối ưu hóa và nâng cao hiệu quả trong xử lý thông tin hình ảnh
28 trang 223 0 0