Bài giảng Thống kê ứng dụng (TS Nguyễn Tiến Dũng) - Chương 11 Hồi quy và tương quan đơn biến
Số trang: 35
Loại file: pdf
Dung lượng: 1.20 MB
Lượt xem: 14
Lượt tải: 0
Xem trước 4 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Sau khi học xong chương Hồi quy và tương quan đơn biến, người học sẽ: nói được phạm vi ứng dụng của phương pháp phân tích hồi quy và tương quan đơn biến, biết cách thực hiện một phân tích hồi quy dựa trên dữ liệu mẫu.
Nội dung trích xuất từ tài liệu:
Bài giảng Thống kê ứng dụng (TS Nguyễn Tiến Dũng) - Chương 11 Hồi quy và tương quan đơn biến Chương 11 HỒI QUY VÀ TƯƠNG QUAN ĐƠN BIẾN Ths. Nguyễn Tiến Dũng Viện Kinh tế và Quản lý, Trường ĐH Bách khoa Hà Nội Email: dung.nguyentien3@hust.edu.vn MỤC TIÊU CỦA CHƯƠNG ● Sau khi học xong chương này, người học sẽ ● Nói được phạm vi ứng dụng của phương pháp phân tích hồi quy và tương quan đơn biến ● Biết cách thực hiện một phân tích hồi quy dựa trên dữ liệu mẫu ● Nói được những điều kiện và giả định cần thiết khi phân tích hồi quy ● Biết được cách tính và ý nghĩa của hệ số tương quan Pearson và hệ số tương quan hạng Spearman © 2013 Nguyễn Tiến Dũng 2 CÁC NỘI DUNG CHÍNH ● 11.1 LÀM QUEN VỚI HỒI QUY ● 11.2 MÔ HÌNH HỒI QUY TUYẾN TÍNH ĐƠN ● 11.3 TƯƠNG QUAN TUYẾN TÍNH ● 11.4 TƯƠNG QUAN GIỮA CÁC BIẾN ĐỊNH TÍNH © 2013 Nguyễn Tiến Dũng 3 11.1 Làm quen với hồi quy ● 11.1.1 Khái niệm hồi quy ● Regression, Regression to mediority: quy các điểm DL đã biết về một đường lý thuyết ● Đ/nghĩa của TK: ● NC mối liên hệ phụ thuộc giữa một biến phụ thuộc (biến đầu ra) và một hay nhiều biến độc lập (biến đầu vào), ● nhằm ước tính hoặc dự báo giá trị trung bình tổng thể của biến phụ thuộc dựa trên các giá trị biết trước của biến độc lập ● Hồi quy đơn biến (simple regression): 1 biến PT và 1 biến ĐL, DL định lượng ● TD: ● KQ học tập = f(thời gian tự học) ● KQ học tập = f(thời gian tự học, yêu thích chuyên ngành) ● Lượng tiêu thụ = f(P1, P2, P3, P4) ● Chất lượng sản phẩm = f(NVL, thiết bị, công nghệ, con người, quản lý) © 2013 Nguyễn Tiến Dũng 4 11.1.2 Phân biệt liên hệ TK và liên hệ hàm số khi phân tích hồi quy ● Liên hệ hàm số: Y = b0 + b1X ● Với 1 giá trị của X, có 1 giá trị xác định và duy nhất của Y ● Liên hệ TK: Y = b0 + b1.X ● X = thời gian tự học; Y = điểm GPA ● DL về X: dữ liệu mẫu ● Một X, có thể có nhiều Y ● DL mẫu xác định đường HQ mẫu dự đoán đường HQ tổng thể © 2013 Nguyễn Tiến Dũng 5 © 2013 Nguyễn Tiến Dũng 6 11.1.3 Quy ước về ký hiệu và tên gọi ● Biến số: Y = b0 + b1.X1 + b2X2 ● Biến độc lập, biến đầu vào, biến giải thích: X1, X2 ● Biến phụ thuộc, biến đầu ra, biến được giải thích: Y ● Xki: giá trị của quan sát thứ i của biến Xk. ● b0, b1, b2: các hệ số của phương trình hồi quy ● Hồi quy đơn biến và hồi quy đa biến (HQ bội) ● HQ đơn biến (simple regression): 1 biến ĐL ● HQ đa biến (multiple regression): nhiều biến ĐL © 2013 Nguyễn Tiến Dũng 7 11.1.4 Các dạng liên hệ giữa biến độc lập và biến phụ thuộc © 2013 Nguyễn Tiến Dũng 8 11.2 Mô hình hồi quy tuyến tính đơn ● 11.2.1 Mở đầu ● NC mối liên hệ giữa thu nhập (X) và chi tiêu (Y) ● Lấy mẫu n hộ gia đình ● Đường hồi quy lý thuyết ● E(Y|Xi) = b0 + b1.Xi ● Yi = b0 + b1Xi + ei ● b0: hệ số tung độ gốc (hệ số chặn) ● b1: hệ số dốc (hệ số góc) ● ei: sai số, thể hiện yếu tố nhiễu © 2013 Nguyễn Tiến Dũng 9 11.2.2 Các giả định liên quan đến yếu tố nhiễu ● Các ei tại mỗi Xi có phân phối bình thường ● Không có sự tương quan giữa các nhiễu, hay các ei độc lập với nhau © 2013 Nguyễn Tiến Dũng 10 11.2.3 Ý nghĩa và cách xác định các hệ số hồi quy ● b1: hệ số độ dốc, đo lường lượng thay đổi TB trong biến phụ thuộc Y khi X thay đổi 1 đơn vị. ● b0: hệ số tung độ gốc cho biết giá trị của Y khi X = 0, có thể coi là ảnh hưởng TB của các yếu tố khác mà không có mặt trong mô hình © 2013 Nguyễn Tiến Dũng 11 Dữ liệu mẫu Bảng 11.1 Stt Số năm Doanh số 1 3 487 2 5 445 3 2 272 4 8 641 5 2 187 6 6 440 7 7 346 8 1 238 9 4 312 10 2 269 11 9 655 12 6 563 © 2013 Nguyễn Tiến Dũng 12 Xác định các hệ số hồi quy ● Phương pháp Cực tiểu hoá tổng bình phương của các phần dư n n min ei2 min (Yi b0 b1X i ) 2 i 1 i 1 n (X i X )(Yi Y ) b1 i 1 n (X i X )2 i 1 b0 Y b1 X © 2013 Nguyễn Tiến Dũng 13 11.2.4 Tính toán các kết quả hồi quy bằng Excel ● Vẽ đồ thị Scatter Chart y = 49,91x + 175,83 700 R² = 0,6931 Doanh số bán hàng (triệu đồng) 600 500 400 300 200 100 0 0 2 4 6 8 10 Số năm kinh nghiệm © 2013 Nguyễn Tiến Dũng 14 ● Sử dụng Data Analysis © 2013 Nguyễn Tiến Dũng 15 11.2.6 Đo lường biến thiên bằng Hệ số xác định ...
Nội dung trích xuất từ tài liệu:
Bài giảng Thống kê ứng dụng (TS Nguyễn Tiến Dũng) - Chương 11 Hồi quy và tương quan đơn biến Chương 11 HỒI QUY VÀ TƯƠNG QUAN ĐƠN BIẾN Ths. Nguyễn Tiến Dũng Viện Kinh tế và Quản lý, Trường ĐH Bách khoa Hà Nội Email: dung.nguyentien3@hust.edu.vn MỤC TIÊU CỦA CHƯƠNG ● Sau khi học xong chương này, người học sẽ ● Nói được phạm vi ứng dụng của phương pháp phân tích hồi quy và tương quan đơn biến ● Biết cách thực hiện một phân tích hồi quy dựa trên dữ liệu mẫu ● Nói được những điều kiện và giả định cần thiết khi phân tích hồi quy ● Biết được cách tính và ý nghĩa của hệ số tương quan Pearson và hệ số tương quan hạng Spearman © 2013 Nguyễn Tiến Dũng 2 CÁC NỘI DUNG CHÍNH ● 11.1 LÀM QUEN VỚI HỒI QUY ● 11.2 MÔ HÌNH HỒI QUY TUYẾN TÍNH ĐƠN ● 11.3 TƯƠNG QUAN TUYẾN TÍNH ● 11.4 TƯƠNG QUAN GIỮA CÁC BIẾN ĐỊNH TÍNH © 2013 Nguyễn Tiến Dũng 3 11.1 Làm quen với hồi quy ● 11.1.1 Khái niệm hồi quy ● Regression, Regression to mediority: quy các điểm DL đã biết về một đường lý thuyết ● Đ/nghĩa của TK: ● NC mối liên hệ phụ thuộc giữa một biến phụ thuộc (biến đầu ra) và một hay nhiều biến độc lập (biến đầu vào), ● nhằm ước tính hoặc dự báo giá trị trung bình tổng thể của biến phụ thuộc dựa trên các giá trị biết trước của biến độc lập ● Hồi quy đơn biến (simple regression): 1 biến PT và 1 biến ĐL, DL định lượng ● TD: ● KQ học tập = f(thời gian tự học) ● KQ học tập = f(thời gian tự học, yêu thích chuyên ngành) ● Lượng tiêu thụ = f(P1, P2, P3, P4) ● Chất lượng sản phẩm = f(NVL, thiết bị, công nghệ, con người, quản lý) © 2013 Nguyễn Tiến Dũng 4 11.1.2 Phân biệt liên hệ TK và liên hệ hàm số khi phân tích hồi quy ● Liên hệ hàm số: Y = b0 + b1X ● Với 1 giá trị của X, có 1 giá trị xác định và duy nhất của Y ● Liên hệ TK: Y = b0 + b1.X ● X = thời gian tự học; Y = điểm GPA ● DL về X: dữ liệu mẫu ● Một X, có thể có nhiều Y ● DL mẫu xác định đường HQ mẫu dự đoán đường HQ tổng thể © 2013 Nguyễn Tiến Dũng 5 © 2013 Nguyễn Tiến Dũng 6 11.1.3 Quy ước về ký hiệu và tên gọi ● Biến số: Y = b0 + b1.X1 + b2X2 ● Biến độc lập, biến đầu vào, biến giải thích: X1, X2 ● Biến phụ thuộc, biến đầu ra, biến được giải thích: Y ● Xki: giá trị của quan sát thứ i của biến Xk. ● b0, b1, b2: các hệ số của phương trình hồi quy ● Hồi quy đơn biến và hồi quy đa biến (HQ bội) ● HQ đơn biến (simple regression): 1 biến ĐL ● HQ đa biến (multiple regression): nhiều biến ĐL © 2013 Nguyễn Tiến Dũng 7 11.1.4 Các dạng liên hệ giữa biến độc lập và biến phụ thuộc © 2013 Nguyễn Tiến Dũng 8 11.2 Mô hình hồi quy tuyến tính đơn ● 11.2.1 Mở đầu ● NC mối liên hệ giữa thu nhập (X) và chi tiêu (Y) ● Lấy mẫu n hộ gia đình ● Đường hồi quy lý thuyết ● E(Y|Xi) = b0 + b1.Xi ● Yi = b0 + b1Xi + ei ● b0: hệ số tung độ gốc (hệ số chặn) ● b1: hệ số dốc (hệ số góc) ● ei: sai số, thể hiện yếu tố nhiễu © 2013 Nguyễn Tiến Dũng 9 11.2.2 Các giả định liên quan đến yếu tố nhiễu ● Các ei tại mỗi Xi có phân phối bình thường ● Không có sự tương quan giữa các nhiễu, hay các ei độc lập với nhau © 2013 Nguyễn Tiến Dũng 10 11.2.3 Ý nghĩa và cách xác định các hệ số hồi quy ● b1: hệ số độ dốc, đo lường lượng thay đổi TB trong biến phụ thuộc Y khi X thay đổi 1 đơn vị. ● b0: hệ số tung độ gốc cho biết giá trị của Y khi X = 0, có thể coi là ảnh hưởng TB của các yếu tố khác mà không có mặt trong mô hình © 2013 Nguyễn Tiến Dũng 11 Dữ liệu mẫu Bảng 11.1 Stt Số năm Doanh số 1 3 487 2 5 445 3 2 272 4 8 641 5 2 187 6 6 440 7 7 346 8 1 238 9 4 312 10 2 269 11 9 655 12 6 563 © 2013 Nguyễn Tiến Dũng 12 Xác định các hệ số hồi quy ● Phương pháp Cực tiểu hoá tổng bình phương của các phần dư n n min ei2 min (Yi b0 b1X i ) 2 i 1 i 1 n (X i X )(Yi Y ) b1 i 1 n (X i X )2 i 1 b0 Y b1 X © 2013 Nguyễn Tiến Dũng 13 11.2.4 Tính toán các kết quả hồi quy bằng Excel ● Vẽ đồ thị Scatter Chart y = 49,91x + 175,83 700 R² = 0,6931 Doanh số bán hàng (triệu đồng) 600 500 400 300 200 100 0 0 2 4 6 8 10 Số năm kinh nghiệm © 2013 Nguyễn Tiến Dũng 14 ● Sử dụng Data Analysis © 2013 Nguyễn Tiến Dũng 15 11.2.6 Đo lường biến thiên bằng Hệ số xác định ...
Tìm kiếm theo từ khóa liên quan:
Nguyên lý thống kê Thống kê doanh nghiệp Tương quan đơn biến Thống kê ứng dụng Bài giảng thống kê ứng dụng Tài liệu thống kê ứng dụngTài liệu liên quan:
-
Tiểu luận học phần Nguyên lý thống kê kinh tế
20 trang 322 0 0 -
32 trang 125 0 0
-
150 Câu trắc nghiệm nguyên lý thống kê
20 trang 101 0 0 -
Bài giảng Xác suất thống kê ứng dụng trong kinh tế xã hội: Chương 3 - ĐH Thăng Long
24 trang 101 0 0 -
Đề thi Nguyên lý thống kê (Mã đề 153)
5 trang 79 0 0 -
Đặc trưng thống kê và hồi quy với dữ liệu khoảng
5 trang 76 0 0 -
Giáo trình Nguyên lý thống kê kinh tế - TS. Mai Văn Nam
135 trang 61 0 0 -
Bài tập Nguyên lý thống kê và phân tích dự báo: Phần 2
162 trang 59 0 0 -
104 trang 48 1 0
-
Bài tập lớn môn Nguyên lý thống kê: Khảo sát việc học Tiếng Anh của sinh viên Học viện Ngân hàng
39 trang 44 0 0