Danh mục

Bài giảng Trí tuệ nhân tạo: Bài 1+2 - Phạm Thị Anh Lê

Số trang: 49      Loại file: pdf      Dung lượng: 1.18 MB      Lượt xem: 15      Lượt tải: 0    
tailieu_vip

Phí tải xuống: 1,000 VND Tải xuống file đầy đủ (49 trang) 0
Xem trước 5 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Bài giảng Trí tuệ nhân tạo: Bài 1+2 - Phạm Thị Anh Lê cung cấp cho học viên những kiến thức giới thiệu về trí tuệ nhân tạo và các khái niệm cơ bản, Agent thông minh, hệ thống ứng xử, hệ thống tư duy,... Mời các bạn cùng tham khảo chi tiết nội dung bài giảng!
Nội dung trích xuất từ tài liệu:
Bài giảng Trí tuệ nhân tạo: Bài 1+2 - Phạm Thị Anh Lê Khoa Công nghệ thông tin Trường Đại học Sư phạm Hà nội TRÍ TUỆ NHÂN TẠO Artificial Intelligence Phạm Thị Anh Lê Khoa CNTT - ĐHSP Hà nội TTNT. p.1 Nội Dung  Lec 1. Giới thiệu về TTNT, các khái niệm cơ bản  Lec 2. Agent thông minh  Lec 3. Giải quyết bài toán bằng tìm kiếm: tìm kiếm mù  Lec 4. Tìm kiếm kinh nghiệm (heuristics)  Lec 5. Tìm kiếm có đối thủ  Lec 6. Logic mệnh đề  Lec 7-8. Logic vị từ cấp một  Lec 9-10. Biểu diễn tri thức bởi các luật và lập luận  Lec 11-13. Lập trình logic Prolog  Lec 14-15. Tri thức không chắc chắn: logic xác suất, logic mờ TTNT. p.2  Tài liệu tham khảo: – Trí tuệ nhân tạo, by Đinh Mạnh Tường – Trí tuệ nhân tạo: các phương pháp giải quyết vấn đề và kỹ thuật xử lý tri thức, by Nguyễn Thanh Thủy – Artificial Intelligence: A Modern Approach, by Stuart Russell and Peter Norvig. (2nd ed) – Citeseer - Scientific Literature Digital Library. Artificial Intelligence-http://citeseer.nj.nec.com/ArtificialIntelligence/ - 2003 TTNT. p.3 Overview (Giới thiệu tổng quan) General Introduction 01-Introduction. [AIMA Ch 1] Course Schedule. Homeworks, exams and grading. Course material, TAs and office hours. Why study AI? What is AI? The Turing test. Rationality. Branches of AI. Research disciplines connected to and at the foundation of AI. Brief history of AI. Challenges for the future. Overview of class syllabus. Agent 02-Intelligent Agents. [AIMA Ch 2] What is sensors effectors  an intelligent agent? Examples. Doing the right thing (rational action). Performance measure. Autonomy. Environment and agent design. Structure of agents. Agent types. Reflex agents. Reactive agents. Reflex agents with state. Goal-based agents. Utility-based agents. Mobile CS 460, Lecture 1 TTNT. p.4 agents. Information agents. Overview (cont.) How can we solve complex problems?  03/04-Problem solving and search. [AIMA Ch 3] Example: measuring problem. Types of problems. 9l 3l 5l More example problems. Basic idea behind search Using these 3 buckets, algorithms. Complexity. Combinatorial explosion measure 7 liters of water. and NP completeness. Polynomial hierarchy.  05-Uninformed search. [AIMA Ch 3] Depth-first. Breadth-first. Uniform-cost. Depth-limited. Iterative deepening. Examples. Properties.  06/07-Informed search. [AIMA Ch 4] Best-first. A* search. Heuristics. Hill climbing. Problem of local extrema. Simulated annealing. Traveling salesperson problem CS 460, Lecture 1 TTNT. p.5 Overview (cont.) Practical applications of search.  08/09-Game playing. [AIMA Ch 5] The minimax algorithm. Resource limitations. Aplha- beta pruning. Elements of chance and non- deterministic games. tic-tac-toe CS 460, Lecture 1 TTNT. p.6 Overview (cont.) Towards intelligent agents  10-Agents that reason logically 1. [AIMA Ch 6] Knowledge-based agents. Logic and representation. Propositional (boolean) logic.  11-Agents that reason logically 2. [AIMA Ch 6] Inference in propositional logic. Syntax. Semantics. wumpus world Examples. CS 460, Lecture 1 TTNT. p.7 Overview (cont.) Building knowledge-based agents: 1st Order Logic  12-First-order logic 1. [AIMA Ch 7] Syntax. Semantics. Atomic sentences. Complex sentences. Quantifiers. Examples. FOL knowledge base. Situation calculus.  13-First-order logic 2. [AIMA Ch 7] Describing actions. Planning. Action sequences. CS 460, Lecture 1 TTNT. p.8 Overview (cont.) Representing and Organizing Knowledge  14/15-Building a knowledge base. [AIMA Ch 8] Knowledge bases. Vocabulary and rules. Ontologies. Organizing knowledge. An ontology for the sports domain Kahn & Mcleod, 2000 CS 460, Lecture 1 TTNT. p.9 Overview (cont.) Reasoning Logically  16/17/18-Inference in first-order logic. [AIMA Ch 9] Proofs. Unification. Generalized modus ponens. Forward and backward chaining. Example of backward chaining CS 460, Lecture 1 TTNT. p.10 Overview (cont.) Examples of Logical Reasoning Systems  19-Logical reasoning systems. ...

Tài liệu được xem nhiều:

Gợi ý tài liệu liên quan: