Bài giảng Xử lý ảnh - Chương 12: Xử lý dữ liệu lấy mẫu
Số trang: 24
Loại file: pdf
Dung lượng: 324.43 KB
Lượt xem: 14
Lượt tải: 0
Xem trước 3 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Trong các chương trước, chúng ta đã đề cập đến xử lý ảnh số mà không đặc biệt chú ý đến các ảnh hưởng của việc lấy mẫu. Chúng ta đã giả thiết rằng, được thực hiện một cách hoàn chỉnh, việc lấy mẫu sẽ không làm mất hiệu lực các kết quả thu được từ việc phân tích các hàm liên tục. Nhưng lấy mẫu vốn thuộc xử lý số. Cho nên, chúng ta sẽ sử dụng các công cụ mà chúng ta đã phát triển trong các chương trước để tiếp cận việc lấy mẫu một cách súc tích và hiệu quả trong chương này
Nội dung trích xuất từ tài liệu:
Bài giảng Xử lý ảnh - Chương 12: Xử lý dữ liệu lấy mẫu Ch¬ng 12 XỬ LÝ DỮ LIỆU LẤY MẪU 12.1. GIỚI THIỆU Trong các chương trước, chúng ta đã đề cập đến xử lý ảnh số mà không đặc boiệt chú ý đến các ảnh hưởng của việc lấy mẫu. Chúng ta đã giả thiết rằng, được thực hiện một cách hoàn chỉnh, việc lấy mẫu sẽ không làm mất hiệu lực các kết quả thu được từ việc phân tích các hàm liên tục. Nhưng lấy mẫu vốn thuộc xử lý số. Cho nên, chúng ta sẽ sử dụng các công cụ mà chúng ta đã phát triển trong các chương trước để tiếp cận việc lấy mẫu một cách súc tích và hiệu quả trong chương này. Trước hết, chúng ta điều tra nghiên cứu các nhánh (ramification) lấy mẫu ảnh liên tục và xử lý dữ liệu lấy mẫu. Đặc biệt, chúng ta sẽ trả lời những câu hỏi sau đây: (1) Trong phạm vi nào thì việc lấy mẫu sẽ làm mất mát thông tin? (2) Khi lấy mẫu một hàm liên tục thì có thể khôi phục lại một cách đầy đủ được không và nếu có thig như thế nào? (3) Chúng ta phải lấy mẫu một hàm chi tiết đến mức nào để có thể bảo toàn được nó? (4) Việc lấy mẫu có ảnh hưởng gì lên phổ của một hàm? (5) Nếu chúng ta coi một hàm được lấy mẫu như thể một hàm liên tục thì phải gồm những giả thiết, những giá trị xấp xỉ, những lỗi gì? 12.2. LẤY MẪU VÀ PHÉP NỘI SUY Trước khi chúng ta có thể miêu tả các kết quả lấy mẫu một cách định lượng, chúng ta phải thiết lập một thủ tục toán học để mô hình hoá quá trình. Để thực hiện điều này, chúng ta sử dụng một hàm đặc biệt gọi là hàm Shah. 12.2.1. Hàm Shah Một công cụ quan trọng cho việc mô phỏng quá trình lấy mẫu là dãy (train) xung vô hạn, III(x), đọc là “Shah của x” và được định nghĩa III ( x) ( x n) n (1) III(x) là chuỗi các xung đơn vị biên độ nằm cách đều nhau trên trục x. Thật may mắn cho chúng ta, hàm Shah cũng chính là biến đổi Fourier của nó; tức là, {III ( x)} III (s ) (2) Chúng ta sẽ sử dụng hàm này để mô phỏng quá trình lấy mẫu một tín hiệu liên tục. 12.2.1.1. Tính đồng dạng Nếu chúng ta thay thế lý thuyết đồng dạng 1 s { f (ax )} F (3) a a 203 Vào biểu thức (2), chúng ta sẽ được x III III (s ) (4) Trong đó phổ là dãy các xung nằm cách đều nhau một khoảng 1/ trên trục s (Hình 12-1). Nên nhớ rằng do tính đồng dạng, xung có tính chất kỳ lạ đó là 1 (ax) ( x) (5) a Bởi vì III(x) là dãy vô hạn các xung có khoảng cách bằng nhau [biểu thức(1)] nên nó cũng biểu hiện tính chất này dưới sự giãn ra và nén lại. Đặc biệt, n III (ax) (ax n) a x a (6) n n Nghĩa là 1 n III ax x a (7) a n HÌNH 12-1 Hình 12-1 Hàm Shah và phổ của nó Nếu ta đặt a = 1/ thì ta sẽ có x III x n (8) n Hay các xung nằm cách nhau từng khoảng . Chú ý rằng khoảng cách giữa các xung chứ không phải các đơn vị khoảng cách nhân với hệ số cường độ xung . Biến đổi biểu thức (8) ta được x n III III s s (9) n 204 Hai biểu thức sau cùng chỉ rõ rằng một dãy các xung cường độ đặt cách nhau từng khoảng trong miền thời gian tạo ra một dãy xung đơn vị đặt cách nhau một khoảng 1/ trong miền tần số. Dĩ nhiên, chúng ta có thể chia biểu thức (8) cho để được các xung đơn vị cường độ trong miền thời gian và các xung cường độ 1/ tương ứng trong miền tần số. 12.2.2. Lấy mẫu bằng hàm Shah Giả sử hàm Shah bị giới hạn dải tần tại tần số s0; tức là, F ( s) 0 s s0 (10) Điều này được cho thấy trong hình 12-2. Nếu chúng ta lấy mẫu f(x) tại các khoảng cách bằng nhau, chúng ta sẽ triệt tiêu toàn bộ hàm f(x) ngoại từ tại điểm x = n. Chúng ta có thể mô phỏng quá trình lấy mẫu như phép nhân đơn giản giữa hàm f(x) với III(x/) để tạo thành hàm được lấy mẫu g(x). Quá trình triệt tiêu hàm giữa các điểm lấy mẫu bằng cách chia nó cho 0 và nhưng vẫn bảo toàn giá trị hàm tại các điểm lấy mẫu trong cường độ các xung kết quả. Hình 121-3 minh hoạ cho một hàm được lấy mẫu. Sự thuận tiện về toán học khiến cho mô hình này được lựa chọn làm phương pháp lẫy mẫu. HÌNH 12-2 Hình 12-2 Hàm giới hạn dải HÌNH 12-3 Hình 12-3 Hàm được lấy mẫu 205 12.2.3. Lấy mẫu và phổ Bây giờ chúng ta xem xét việc lấy mẫu phổ của f(x) sẽ cho ta cái ...
Nội dung trích xuất từ tài liệu:
Bài giảng Xử lý ảnh - Chương 12: Xử lý dữ liệu lấy mẫu Ch¬ng 12 XỬ LÝ DỮ LIỆU LẤY MẪU 12.1. GIỚI THIỆU Trong các chương trước, chúng ta đã đề cập đến xử lý ảnh số mà không đặc boiệt chú ý đến các ảnh hưởng của việc lấy mẫu. Chúng ta đã giả thiết rằng, được thực hiện một cách hoàn chỉnh, việc lấy mẫu sẽ không làm mất hiệu lực các kết quả thu được từ việc phân tích các hàm liên tục. Nhưng lấy mẫu vốn thuộc xử lý số. Cho nên, chúng ta sẽ sử dụng các công cụ mà chúng ta đã phát triển trong các chương trước để tiếp cận việc lấy mẫu một cách súc tích và hiệu quả trong chương này. Trước hết, chúng ta điều tra nghiên cứu các nhánh (ramification) lấy mẫu ảnh liên tục và xử lý dữ liệu lấy mẫu. Đặc biệt, chúng ta sẽ trả lời những câu hỏi sau đây: (1) Trong phạm vi nào thì việc lấy mẫu sẽ làm mất mát thông tin? (2) Khi lấy mẫu một hàm liên tục thì có thể khôi phục lại một cách đầy đủ được không và nếu có thig như thế nào? (3) Chúng ta phải lấy mẫu một hàm chi tiết đến mức nào để có thể bảo toàn được nó? (4) Việc lấy mẫu có ảnh hưởng gì lên phổ của một hàm? (5) Nếu chúng ta coi một hàm được lấy mẫu như thể một hàm liên tục thì phải gồm những giả thiết, những giá trị xấp xỉ, những lỗi gì? 12.2. LẤY MẪU VÀ PHÉP NỘI SUY Trước khi chúng ta có thể miêu tả các kết quả lấy mẫu một cách định lượng, chúng ta phải thiết lập một thủ tục toán học để mô hình hoá quá trình. Để thực hiện điều này, chúng ta sử dụng một hàm đặc biệt gọi là hàm Shah. 12.2.1. Hàm Shah Một công cụ quan trọng cho việc mô phỏng quá trình lấy mẫu là dãy (train) xung vô hạn, III(x), đọc là “Shah của x” và được định nghĩa III ( x) ( x n) n (1) III(x) là chuỗi các xung đơn vị biên độ nằm cách đều nhau trên trục x. Thật may mắn cho chúng ta, hàm Shah cũng chính là biến đổi Fourier của nó; tức là, {III ( x)} III (s ) (2) Chúng ta sẽ sử dụng hàm này để mô phỏng quá trình lấy mẫu một tín hiệu liên tục. 12.2.1.1. Tính đồng dạng Nếu chúng ta thay thế lý thuyết đồng dạng 1 s { f (ax )} F (3) a a 203 Vào biểu thức (2), chúng ta sẽ được x III III (s ) (4) Trong đó phổ là dãy các xung nằm cách đều nhau một khoảng 1/ trên trục s (Hình 12-1). Nên nhớ rằng do tính đồng dạng, xung có tính chất kỳ lạ đó là 1 (ax) ( x) (5) a Bởi vì III(x) là dãy vô hạn các xung có khoảng cách bằng nhau [biểu thức(1)] nên nó cũng biểu hiện tính chất này dưới sự giãn ra và nén lại. Đặc biệt, n III (ax) (ax n) a x a (6) n n Nghĩa là 1 n III ax x a (7) a n HÌNH 12-1 Hình 12-1 Hàm Shah và phổ của nó Nếu ta đặt a = 1/ thì ta sẽ có x III x n (8) n Hay các xung nằm cách nhau từng khoảng . Chú ý rằng khoảng cách giữa các xung chứ không phải các đơn vị khoảng cách nhân với hệ số cường độ xung . Biến đổi biểu thức (8) ta được x n III III s s (9) n 204 Hai biểu thức sau cùng chỉ rõ rằng một dãy các xung cường độ đặt cách nhau từng khoảng trong miền thời gian tạo ra một dãy xung đơn vị đặt cách nhau một khoảng 1/ trong miền tần số. Dĩ nhiên, chúng ta có thể chia biểu thức (8) cho để được các xung đơn vị cường độ trong miền thời gian và các xung cường độ 1/ tương ứng trong miền tần số. 12.2.2. Lấy mẫu bằng hàm Shah Giả sử hàm Shah bị giới hạn dải tần tại tần số s0; tức là, F ( s) 0 s s0 (10) Điều này được cho thấy trong hình 12-2. Nếu chúng ta lấy mẫu f(x) tại các khoảng cách bằng nhau, chúng ta sẽ triệt tiêu toàn bộ hàm f(x) ngoại từ tại điểm x = n. Chúng ta có thể mô phỏng quá trình lấy mẫu như phép nhân đơn giản giữa hàm f(x) với III(x/) để tạo thành hàm được lấy mẫu g(x). Quá trình triệt tiêu hàm giữa các điểm lấy mẫu bằng cách chia nó cho 0 và nhưng vẫn bảo toàn giá trị hàm tại các điểm lấy mẫu trong cường độ các xung kết quả. Hình 121-3 minh hoạ cho một hàm được lấy mẫu. Sự thuận tiện về toán học khiến cho mô hình này được lựa chọn làm phương pháp lẫy mẫu. HÌNH 12-2 Hình 12-2 Hàm giới hạn dải HÌNH 12-3 Hình 12-3 Hàm được lấy mẫu 205 12.2.3. Lấy mẫu và phổ Bây giờ chúng ta xem xét việc lấy mẫu phổ của f(x) sẽ cho ta cái ...
Tìm kiếm theo từ khóa liên quan:
Xử lý ảnh Bài giảng Xử lý ảnh Xử lý dữ liệu lấy mẫu Phép nội suy Lý thuyết lấy mẫu Tính toán phổGợi ý tài liệu liên quan:
-
Phương pháp truyền dữ liệu giữa hai điện thoại thông minh qua môi trường ánh sáng nhìn thấy
6 trang 329 0 0 -
Đồ án: Kỹ thuật xử lý ảnh sử dụng biến đổi Wavelet
41 trang 219 0 0 -
Xây dựng công cụ nhận dạng khuôn mặt theo thời gian thực hiện trên nền hệ điều hành mã nguồn mỡ
7 trang 212 0 0 -
Đồ án tốt nghiệp: Ứng dụng xử lý ảnh trong hệ thống phân loại sản phẩm
123 trang 201 0 0 -
Đề cương chi tiết môn học Kỹ thuật đồ họa và xử lý ảnh
5 trang 175 1 0 -
Bài giảng Xử lý ảnh - Trần Quang Đức
209 trang 174 1 0 -
Đồ án tốt nghiệp: Ứng dụng camera 3D trong việc phân loại sản phẩm theo hình dạng và kích thước
83 trang 114 0 0 -
578 trang 103 0 0
-
Phương pháp Xử lý ảnh bằng kỹ thuật số: Phần 1
92 trang 101 0 0 -
Giáo trình Nhận dạng và xử lý ảnh: Phần 2
137 trang 94 0 0