Bài giảng Xử lý ảnh - Chương 16: Khôi phục ảnh
Số trang: 38
Loại file: pdf
Dung lượng: 501.53 KB
Lượt xem: 17
Lượt tải: 0
Xem trước 4 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Tiêu chí cho việc khôi phục ảnh là mang lại một ảnh tương đối giống ảnh ban đầu khi ảnh số thu được bị suy giảm. Mỗi phần tử trong chuỗi thu nhận ảnh (thấu kính, film, bộ số hoá,...) đều có thể tạo ra suy giảm. Khôi phục từng phần ảnh bị mất chất lượng có thể thoả mãn một khía cạnh thẩm mỹ nào đó, tuỳ thuộc vào từng ứng dụng cụ thể. Trong chương này, chúng ta xem xét một vài phương pháp tiếp cận khôi phục ảnh. Ta cũng xem xét các bài toán nhận biết hệ thống và mô phỏng nhiễu.
Nội dung trích xuất từ tài liệu:
Bài giảng Xử lý ảnh - Chương 16: Khôi phục ảnh Ch¬ng 16 KHÔI PHỤC ẢNH 16.1. GIỚI THIỆU Trong lịch sử, lĩnh vực hoạt động rộng lớn của xử lý ảnh số đã dành hết cho việc khôi phục ảnh. Công việc này bao gồm cả nghiên cứu phát triển thuật giải lẫn chương trình, xử lý ảnh có mục đích. Nhiều đóng góp đáng chú ý trong xử lý ảnh số đã được thực hiện trước kia cũng như sau này. Dựa vào khôi phục ảnh, chúng ta muốn loại bỏ hay làm giảm những suy giảm gặp phải trong khi thu nhận ảnh số. Sự suy giảm bao gồm sự mờ do hệ thống quang học, di chuyển đối tượng và cả nhiễu từ điện tử hay nguồn quang trắc. Trong khi khôi phục ảnh có thể được định nghĩa bao gồm nhiều kỹ thuật đã đề cập trong Phần 1, ta coi nó là biểu hiện của lớp các thao tác bị hạn chế nhiều hơn. Tiêu chí cho việc khôi phục ảnh là mang lại một ảnh tương đối giống ảnh ban đầu khi ảnh số thu được bị suy giảm. Mỗi phần tử trong chuỗi thu nhận ảnh (thấu kính, film, bộ số hoá,...) đều có thể tạo ra suy giảm. Khôi phục từng phần ảnh bị mất chất lượng có thể thoả mãn một khía cạnh thẩm mỹ nào đó, tuỳ thuộc vào từng ứng dụng cụ thể. Một ví dụ cho trường hợp sau là các nhiệm vụ thu thập ảnh mặt trăng và hành tinh trong chương trình không gian. Trong chương này, chúng ta xem xét một vài phương pháp tiếp cận khôi phục ảnh. Ta cũng xem xét các bài toán nhận biết hệ thống và mô phỏng nhiễu. Đối với những tin tức chi tiết về các đối tượng, độc giả nên tham khảo tài liệu hay nghiên cứu về lĩnh vực này. 16.1.1. Tiếp cận và mô phỏng Tiến trình khôi phục ảnh bị suy giảm có thể tiếp cận theo một trong hai cách cơ bản. Nếu không biết nhiều về ảnh, ta có thể cố gắng để mô phỏng và mô tả đặc điểm các nguồn suy giảm (mờ và nhiễu) và thực hiện quá trình loại bỏ và giảm bớt ảnh hưởng của chúng. Đây là cách tiếp cận ước đoán, vì ta thử ước đoán ảnh như thế nào trước khi bị suy giảm thông qua xử lý các đặc tính liên quan còn lại. Nói cách khác, rất nhiều nhận thức trước đây về ảnh đã có sẵn, có thể thành công hơn để phát triển mô hình toán học của ảnh ban đầu và điều chỉnh mô hình ảnh quan sát. Một ví dụ cho trường hợp này, giả sử rằng ảnh đã biết chỉ chứa các đối tượng hình tròn có kích thước cố định (các vì sao, các hạt, các tế bào,…). Ở đây, công việc là sự phát hiện, vì chỉ một vài thông số của ảnh ban đầu là chưa biết (số lượng, vị trí, biên độ,…). Việc tiếp cận bài toán khôi phục ảnh cũng thể hiện ở một vài lựa chọn khác. Thứ nhất, việc phát triển có thể sử dụng các phép toán rời rạc hay liên tục. Thứ hai, việc phát triển có thể thực hiện trong miền không gian hay miền tần số. Cuối cùng, trong khi việc thực hiện phải là số (digitally) thì khôi phục có thể thực hiện trong miền không gian (qua tích chập) hay miền tần số (qua phép nhân). Thật may mắn, bây giờ ta đã xác định đượ tập điều kiện mà, nếu được bảo toàn, làm cho các phương pháp tiếp cận khác nhau đều cần thiết ngang nhau. Vì thế, chúng 312 ta có thể sử dụng bất cứ cách tiếp cận nào phù hợp với yêu cầu và ràng buộc của ta nhất, miễn là chúng ta quan tâm đến những giả thiết cơ bản. Thường thường, có hai hay nhiều cách tiếp cận đều dẫn đến cùng một kỹ thuật khôi phục. Các phương pháp tiến hành tốt trong thực tiễn là cơ sở cho bài toán này. Một trong số chúng luôn luôn có vẻ như chờ đợi ta cuối hành trình, không quan tâm đến hướng ta xuất phát hay loại bản đồ và la bàn mà ta sử dụng. Trong chương này, chúng ta xem xét một vài kỹ thuật khôi phục ảnh quan trọng. Chúng ta bắt đầu bằng cách tiếp cận trong miền tần số liên tục theo thứ tự phát triển và ứng dụng của chúng đối với ảnh số. Sau đó ta sẽ nghiên cứu trong miền không gian rời rạc để thống nhất các kết quả có trước thành cơ cấu chung. Tiếp theo, chúng ta sẽ xem xét khía cạnh thực tiễn của việc xử lý mờ biến thiên và nhiễu không cố định. Sau khi xác định các tham số suy giảm ta tiến hành khôi phục ảnh. 16.2. CÁC BỘ LỌC KHÔI PHỤC ẢNH KINH ĐIỂN Trong phần này, chúng ta sử dụng hệ thống trong Hình 16-1 để mô phỏng sự suy giảm và khôi phục ảnh. Ảnh f(x,y) được làm mờ bằng phép toán tuyến tính h(x,y) và nhiễu n(x,y) được thêm vào để tạo thành ảnh suy giảm w(x,y). Ảnh này được nhân chập với bộ lọc khôi phục g(x,y) để cho ảnh khôi phục f^(x,y). f ( x, y ) w( x , y ) f ^ ( x, y ) h ( x, y ) + g ( x, y ) n( x, y ) Hình 16-1 Mô hình khôi phục ảnh liên tục Lý thuyết hệ thống tuyến tính đã được sử dụng để thiết kế các bộ lọc điện tử trong nhiều năm trước khi xử lý ảnh trở nên phổ biến. Nó được ứng dụng rộng rãi trong quang học, xử lý tín hiệu số và các lĩnh vực khác. Ví dụ, giải chập được biết đến trong thiết kế bộ lọc điện tử và phân tích chuỗi thời gian. Thậm chí ước lượng sai số bình phương trung bình (MSE) tối thiểu được Norbert Wienner trình bày vào năm 1948. Vì thế, nhiều kỹ thuật ứng dụng trong khôi phục ảnh là sự tổng hợp từ các phương pháp một chiều đã sử dụng trong xử lý tín hiệu tương tự và tín hiệu số. Thậm chí khi trở thành đặc trưng, các kỹ thuật mới đã được trình bày, chúng tập trung vào cách tiếp cận miền tần số kinh điển 16.2.1. Giải chập (Deconvolution) Vào giữa thập niên 60, giải chập (lọc ngược) đã bắt đầu được ứng dụng rộng rãi để khôi phục ảnh số. Nathan đã sử dụng giải chập hai chiều để khôi phục ảnh từ các nhiệm vụ thám hiểm hành tinh Ranger, Surveyor và Mariner. Vì phổ tín hiệu thường tắt dần nhanh hơn nhiễu ở cùng tần số, nên các thành phần tần số cao thường bị nhiễu tác động. Phương pháp tiếp cận của Nathan đã hạn chế hàm truyền đạt giải chập xuống một giá trị tối đa nào đó (Hình 16-2). Trong suốt chu kỳ lấy mẫu, Harris đã giải chập vệt mờ do sự hỗn loạn của bầu khí quyển trong ảnh thiên văn sử dụng một mô hình phân tích đối với ...
Nội dung trích xuất từ tài liệu:
Bài giảng Xử lý ảnh - Chương 16: Khôi phục ảnh Ch¬ng 16 KHÔI PHỤC ẢNH 16.1. GIỚI THIỆU Trong lịch sử, lĩnh vực hoạt động rộng lớn của xử lý ảnh số đã dành hết cho việc khôi phục ảnh. Công việc này bao gồm cả nghiên cứu phát triển thuật giải lẫn chương trình, xử lý ảnh có mục đích. Nhiều đóng góp đáng chú ý trong xử lý ảnh số đã được thực hiện trước kia cũng như sau này. Dựa vào khôi phục ảnh, chúng ta muốn loại bỏ hay làm giảm những suy giảm gặp phải trong khi thu nhận ảnh số. Sự suy giảm bao gồm sự mờ do hệ thống quang học, di chuyển đối tượng và cả nhiễu từ điện tử hay nguồn quang trắc. Trong khi khôi phục ảnh có thể được định nghĩa bao gồm nhiều kỹ thuật đã đề cập trong Phần 1, ta coi nó là biểu hiện của lớp các thao tác bị hạn chế nhiều hơn. Tiêu chí cho việc khôi phục ảnh là mang lại một ảnh tương đối giống ảnh ban đầu khi ảnh số thu được bị suy giảm. Mỗi phần tử trong chuỗi thu nhận ảnh (thấu kính, film, bộ số hoá,...) đều có thể tạo ra suy giảm. Khôi phục từng phần ảnh bị mất chất lượng có thể thoả mãn một khía cạnh thẩm mỹ nào đó, tuỳ thuộc vào từng ứng dụng cụ thể. Một ví dụ cho trường hợp sau là các nhiệm vụ thu thập ảnh mặt trăng và hành tinh trong chương trình không gian. Trong chương này, chúng ta xem xét một vài phương pháp tiếp cận khôi phục ảnh. Ta cũng xem xét các bài toán nhận biết hệ thống và mô phỏng nhiễu. Đối với những tin tức chi tiết về các đối tượng, độc giả nên tham khảo tài liệu hay nghiên cứu về lĩnh vực này. 16.1.1. Tiếp cận và mô phỏng Tiến trình khôi phục ảnh bị suy giảm có thể tiếp cận theo một trong hai cách cơ bản. Nếu không biết nhiều về ảnh, ta có thể cố gắng để mô phỏng và mô tả đặc điểm các nguồn suy giảm (mờ và nhiễu) và thực hiện quá trình loại bỏ và giảm bớt ảnh hưởng của chúng. Đây là cách tiếp cận ước đoán, vì ta thử ước đoán ảnh như thế nào trước khi bị suy giảm thông qua xử lý các đặc tính liên quan còn lại. Nói cách khác, rất nhiều nhận thức trước đây về ảnh đã có sẵn, có thể thành công hơn để phát triển mô hình toán học của ảnh ban đầu và điều chỉnh mô hình ảnh quan sát. Một ví dụ cho trường hợp này, giả sử rằng ảnh đã biết chỉ chứa các đối tượng hình tròn có kích thước cố định (các vì sao, các hạt, các tế bào,…). Ở đây, công việc là sự phát hiện, vì chỉ một vài thông số của ảnh ban đầu là chưa biết (số lượng, vị trí, biên độ,…). Việc tiếp cận bài toán khôi phục ảnh cũng thể hiện ở một vài lựa chọn khác. Thứ nhất, việc phát triển có thể sử dụng các phép toán rời rạc hay liên tục. Thứ hai, việc phát triển có thể thực hiện trong miền không gian hay miền tần số. Cuối cùng, trong khi việc thực hiện phải là số (digitally) thì khôi phục có thể thực hiện trong miền không gian (qua tích chập) hay miền tần số (qua phép nhân). Thật may mắn, bây giờ ta đã xác định đượ tập điều kiện mà, nếu được bảo toàn, làm cho các phương pháp tiếp cận khác nhau đều cần thiết ngang nhau. Vì thế, chúng 312 ta có thể sử dụng bất cứ cách tiếp cận nào phù hợp với yêu cầu và ràng buộc của ta nhất, miễn là chúng ta quan tâm đến những giả thiết cơ bản. Thường thường, có hai hay nhiều cách tiếp cận đều dẫn đến cùng một kỹ thuật khôi phục. Các phương pháp tiến hành tốt trong thực tiễn là cơ sở cho bài toán này. Một trong số chúng luôn luôn có vẻ như chờ đợi ta cuối hành trình, không quan tâm đến hướng ta xuất phát hay loại bản đồ và la bàn mà ta sử dụng. Trong chương này, chúng ta xem xét một vài kỹ thuật khôi phục ảnh quan trọng. Chúng ta bắt đầu bằng cách tiếp cận trong miền tần số liên tục theo thứ tự phát triển và ứng dụng của chúng đối với ảnh số. Sau đó ta sẽ nghiên cứu trong miền không gian rời rạc để thống nhất các kết quả có trước thành cơ cấu chung. Tiếp theo, chúng ta sẽ xem xét khía cạnh thực tiễn của việc xử lý mờ biến thiên và nhiễu không cố định. Sau khi xác định các tham số suy giảm ta tiến hành khôi phục ảnh. 16.2. CÁC BỘ LỌC KHÔI PHỤC ẢNH KINH ĐIỂN Trong phần này, chúng ta sử dụng hệ thống trong Hình 16-1 để mô phỏng sự suy giảm và khôi phục ảnh. Ảnh f(x,y) được làm mờ bằng phép toán tuyến tính h(x,y) và nhiễu n(x,y) được thêm vào để tạo thành ảnh suy giảm w(x,y). Ảnh này được nhân chập với bộ lọc khôi phục g(x,y) để cho ảnh khôi phục f^(x,y). f ( x, y ) w( x , y ) f ^ ( x, y ) h ( x, y ) + g ( x, y ) n( x, y ) Hình 16-1 Mô hình khôi phục ảnh liên tục Lý thuyết hệ thống tuyến tính đã được sử dụng để thiết kế các bộ lọc điện tử trong nhiều năm trước khi xử lý ảnh trở nên phổ biến. Nó được ứng dụng rộng rãi trong quang học, xử lý tín hiệu số và các lĩnh vực khác. Ví dụ, giải chập được biết đến trong thiết kế bộ lọc điện tử và phân tích chuỗi thời gian. Thậm chí ước lượng sai số bình phương trung bình (MSE) tối thiểu được Norbert Wienner trình bày vào năm 1948. Vì thế, nhiều kỹ thuật ứng dụng trong khôi phục ảnh là sự tổng hợp từ các phương pháp một chiều đã sử dụng trong xử lý tín hiệu tương tự và tín hiệu số. Thậm chí khi trở thành đặc trưng, các kỹ thuật mới đã được trình bày, chúng tập trung vào cách tiếp cận miền tần số kinh điển 16.2.1. Giải chập (Deconvolution) Vào giữa thập niên 60, giải chập (lọc ngược) đã bắt đầu được ứng dụng rộng rãi để khôi phục ảnh số. Nathan đã sử dụng giải chập hai chiều để khôi phục ảnh từ các nhiệm vụ thám hiểm hành tinh Ranger, Surveyor và Mariner. Vì phổ tín hiệu thường tắt dần nhanh hơn nhiễu ở cùng tần số, nên các thành phần tần số cao thường bị nhiễu tác động. Phương pháp tiếp cận của Nathan đã hạn chế hàm truyền đạt giải chập xuống một giá trị tối đa nào đó (Hình 16-2). Trong suốt chu kỳ lấy mẫu, Harris đã giải chập vệt mờ do sự hỗn loạn của bầu khí quyển trong ảnh thiên văn sử dụng một mô hình phân tích đối với ...
Tìm kiếm theo từ khóa liên quan:
Xử lý ảnh Bài giảng Xử lý ảnh Khôi phục ảnh Bộ lọc khôi phục ảnh Cân bằng phổ năng lượng Sự khôi phục đại số tuyến tính Mô hình khôi phục rời rạcTài liệu liên quan:
-
Phương pháp truyền dữ liệu giữa hai điện thoại thông minh qua môi trường ánh sáng nhìn thấy
6 trang 339 0 0 -
Đồ án: Kỹ thuật xử lý ảnh sử dụng biến đổi Wavelet
41 trang 220 0 0 -
Xây dựng công cụ nhận dạng khuôn mặt theo thời gian thực hiện trên nền hệ điều hành mã nguồn mỡ
7 trang 214 0 0 -
Đồ án tốt nghiệp: Ứng dụng xử lý ảnh trong hệ thống phân loại sản phẩm
123 trang 205 0 0 -
Đề cương chi tiết môn học Kỹ thuật đồ họa và xử lý ảnh
5 trang 180 1 0 -
Bài giảng Xử lý ảnh - Trần Quang Đức
209 trang 177 1 0 -
Đồ án tốt nghiệp: Ứng dụng camera 3D trong việc phân loại sản phẩm theo hình dạng và kích thước
83 trang 116 0 0 -
578 trang 105 0 0
-
Phương pháp Xử lý ảnh bằng kỹ thuật số: Phần 1
92 trang 102 0 0 -
Giáo trình Nhận dạng và xử lý ảnh: Phần 2
137 trang 97 0 0