Bài giảng Xử lý ảnh - Chương 20: Nhận dạng mẫu: Phân lớp và đánh giá
Số trang: 30
Loại file: pdf
Dung lượng: 455.89 KB
Lượt xem: 14
Lượt tải: 0
Xem trước 3 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Trong chương 18, chúng ta đã giới thiệu về nhận dạng mẫu thống kê và đã đề cập đến việc tách và trích chọn các đối tượng từ một cảnh phức tạp. Chương 19 đã chỉ ra các phương pháp xác định những đặc điểm của các đối tượng đó. Trong chương này, chúng ta tiếp cận bài toán nhận biết các đối tượng bằng cách phân lớp chúng thành từng nhóm.
Nội dung trích xuất từ tài liệu:
Bài giảng Xử lý ảnh - Chương 20: Nhận dạng mẫu: Phân lớp và đánh giá Ch¬ng 20 NHẬN DẠNG MẪU: PHÂN LỚP VÀ ĐÁNH GIÁ 20.1. GIỚI THIỆU Trong chương 18, chúng ta đã giới thiệu về nhận dạng mẫu thống kê và đã đề cập đến việc tách và trích chọn các đối tượng từ một cảnh phức tạp. Chương 19 đã chỉ ra các phương pháp xác định những đặc điểm của các đối tượng đó. Trong chương này, chúng ta tiếp cận bài toán nhận biết các đối tượng bằng cách phân lớp chúng thành từng nhóm. Có lẽ phải viết nhiều về chủ đề này và chúng ta chỉ có thể giới thiệu các khái niệm cơ bản ở đây. Nếu muốn nghiên cứu đầy đủ hơn, độc giả nên tham khảo tài liệu về chủ đề này (Phụ lục 2) 20.2. PHÂN LỚP 20.2.1. Chọn lọc đặc trưng Nếu ta muốn một hệ thống phân biệt các loại đối tượng khác nhau, đầu tiên chúng ta phải quyết định nên xác định những đặc điểm nào để tạo ra các tham số miêu tả. Các đặc điểm riêng biệt cần xác định gọi là các đặc trưng của đối tượng và các giá trị tham số kết quả gồm có vec tơ đặc trưng đối với từng đối tượng. Việc chọn lựa các đặc trưng thích hợp là rất quan trọng, vì chỉ có chúng mới được sử dụng để nhận biết đối tượng. Có vài phương tiện phân tích để hướng dẫn chọn lựa các đặc trưng. Khả năng trực giác thường xuyên chỉ đạo danh sách các đặc trưng có ích tiềm tàng. Các kỹ thuật sắp xếp đặc trưng tính toán có liên quan đến số lượng các đặc trưng khác nhau. Điều này cho phép lược bớt danh sách chỉ còn một vài đặc trưng tốt nhất. Các đặc trưng tốt có bốn đặc điểm: 1. Sự phân biệt đối xử. Các đặc trưng phải nhận những giá trị khác nhau một cách đáng kể đối với các đối tượng thuộc các lớp khác nhau. Ví dụ, đường kính là dặc tính tốt trong ví dụ sắp xếp trái cây ở chương 18, vì nó nhận những giá trị khác nhau đối với những quả sơ ri và những quả nho. 2. Tính tin cậy. Các đặc trưng phải nhận các giá trị giống nhau đối với mọi đối tượng cùng lớp. Ví dụ, màu sắc có thể là đặc trưng kém đối với những quả táo nếu chúng xuất hiện theo các mức độ chín không ổn định. Tức là, một quả táo xanh và một quả táo chín (đỏ) có thể rất khác nhauvề màu sắc, mặc dù cả hai đều thuộc lớp đối tượng là các quả táo. 3. Tính độc lập. Nhiều đặc trưng được sử dụng khác nhau không được tương quan với nhau. Đường kính và trọng lượng của một trái cây sẽ tạo thành các đặc trưng tương quan chặt, vì trọng lượng tỷ lệ gần đúng với đường kính mũ ba. Bài toán mà cả đường kính lẫn trọng lượng về bản chất đều phản ánh cùng một tính chất, ấy là kích thước của trái cây. Trong khi các đặc trưng tương quan chặt có thể kết hợp (ví dụ, bằng cách lấy trung bình tất cả chúng cùng với nhau) 401 để làm giảm tính nhậy cảm đối với nhiễu, thì nói chung chúng lại không được sử dụng như những đặc trưng độc lập. 4. Các số nhỏ. Tính phức tạp của một hệ thống nhận dạng mẫu tăng nhanh chóng theo kích cỡ (số các đặc trưng được dùng) của hệ thống. Quan trọng hơn là số các đối tượng cần có để huấn luyện bộ phân lớp và để đo lường hiệu suất của nó tăng theo cấp số mũ với số các đặc trưng. Trong vài trường hợp, để có thể đạt được lượng dữ liệu cần thiết cho việc huấn luyện bộ phân lớp tương xứng chỉ là điều hão huyền. Cuối cùng, việc thêm các đặc trưng nhiễu hay đặc trưng tương quan chặt với các đặc trưng hiện có có thể làm suy giảmhiệu suất của những bộ phân lớp, đặc biệt bởi vì kích thước giới hạn của tập huấn luyện. Trong thực tế, quá trình chọn lựa đặc trưng thường bao gồm cả việc kiểm tra tập các đặc trưng hợp lý quatrực giác và việc giảm tập xuống còn một số các đặc trưng tốt nhất có thể chấp nhận. Thường có ít hoặc không có sẵn các đặc trưng lý tưởng dưới dạng các tính chất đã nói ở trên. 20.2.2. Thiết kế bộ phân lớp Thiết kế bộ phân lớp bao gồm việc thiết lập cấu trúc logic của bộ phân lớp và cơ sở toán học của quy tắc phân lớp. Thông thường, đối với mỗi đối tượng thường gặp, sự phân lớp tính toán, với từng lớp, giá trị báo hiệu (bằng độ lớn của nó) mức độ mà đối tượng đó tương tự đối tượng điển hình của lớp đó. Giá trị này được tính như một hàm đặc trưng và nó được dùng để chọn lớp gần giống với công việc được giao nhất. Hầu hết các quy tắc quyết định bộ phân lớp đều giảm đến một vạch ngưỡng phân chia các không gian kích cỡ thành các vùng rời nhau, mỗi lớp một (hoặc nhiều) vùng. Mỗi vùng (phạm vi các giá trị đặc trưng) ứng với một lớp riêng lẻ. Nếu các giá trị đặc trưng nằm trong một vùng riêng biệt thì đối tượng được ấn định cho lớp tương ứng. Trong vài trường hợp, một hoặc nhiều vùng như vậy có thể ứng với một lớp “không xác định”. 20.2.3. Huấn luyện bộ phân lớp Một khi các quy tắc quyết định cơ bản của bộ phân lớp đã được thiết lập thì ta phải xác định các giá trị ngưỡng riêng biệt phân tách các lớp. Điều này thường được thực hiện bằng cách huấn luyện bộ phân lớp theo nhóm các đối tượng đã biết. Tập huấn luyện là một tập hợp các đối tượng từ mỗi lớp đã được nhận biết trước đó bằng một phương pháp chính xác nào đó. Các đối tượng trong tập huấn luyện được đo, và không gian kích cỡ được phân chia, bằng các bề mặt quyết định, thành các vùng mà độ chính xác của bộ phân lớp là tối đa khi nó hoạt động trên tập huấn luyện. Khi huấn luyện một bộ phân lớp, ta có thể sử dụng quy tắc đơn lẻ, ví dụ như tối thiểu hoá tổng các sai số phân lớp. Nếu một vài sự phân lớp sai lầm có thể gây rắc rối hơn những cái khác thì ta có thể thiết lập một hàm giá để giải thích điều này bằng cách cân nhắc các sai số khác nhau một cách gần đúng. Các đường quyết định sau đó được đặt vào để tối thiểu hoá toàn bộ “giá” của việc thao tác bộ phân lớp. Nếu tập huấn luyện là biểu diễn của các đối tượng nói chung thì bộ phân lớp loại cũng phải thực hiện xung quanh các đối tượng mới giống như nó đã từng thực hiện trên tập huấn luyện. Có được một tập huấn luyện đủ lớn ...
Nội dung trích xuất từ tài liệu:
Bài giảng Xử lý ảnh - Chương 20: Nhận dạng mẫu: Phân lớp và đánh giá Ch¬ng 20 NHẬN DẠNG MẪU: PHÂN LỚP VÀ ĐÁNH GIÁ 20.1. GIỚI THIỆU Trong chương 18, chúng ta đã giới thiệu về nhận dạng mẫu thống kê và đã đề cập đến việc tách và trích chọn các đối tượng từ một cảnh phức tạp. Chương 19 đã chỉ ra các phương pháp xác định những đặc điểm của các đối tượng đó. Trong chương này, chúng ta tiếp cận bài toán nhận biết các đối tượng bằng cách phân lớp chúng thành từng nhóm. Có lẽ phải viết nhiều về chủ đề này và chúng ta chỉ có thể giới thiệu các khái niệm cơ bản ở đây. Nếu muốn nghiên cứu đầy đủ hơn, độc giả nên tham khảo tài liệu về chủ đề này (Phụ lục 2) 20.2. PHÂN LỚP 20.2.1. Chọn lọc đặc trưng Nếu ta muốn một hệ thống phân biệt các loại đối tượng khác nhau, đầu tiên chúng ta phải quyết định nên xác định những đặc điểm nào để tạo ra các tham số miêu tả. Các đặc điểm riêng biệt cần xác định gọi là các đặc trưng của đối tượng và các giá trị tham số kết quả gồm có vec tơ đặc trưng đối với từng đối tượng. Việc chọn lựa các đặc trưng thích hợp là rất quan trọng, vì chỉ có chúng mới được sử dụng để nhận biết đối tượng. Có vài phương tiện phân tích để hướng dẫn chọn lựa các đặc trưng. Khả năng trực giác thường xuyên chỉ đạo danh sách các đặc trưng có ích tiềm tàng. Các kỹ thuật sắp xếp đặc trưng tính toán có liên quan đến số lượng các đặc trưng khác nhau. Điều này cho phép lược bớt danh sách chỉ còn một vài đặc trưng tốt nhất. Các đặc trưng tốt có bốn đặc điểm: 1. Sự phân biệt đối xử. Các đặc trưng phải nhận những giá trị khác nhau một cách đáng kể đối với các đối tượng thuộc các lớp khác nhau. Ví dụ, đường kính là dặc tính tốt trong ví dụ sắp xếp trái cây ở chương 18, vì nó nhận những giá trị khác nhau đối với những quả sơ ri và những quả nho. 2. Tính tin cậy. Các đặc trưng phải nhận các giá trị giống nhau đối với mọi đối tượng cùng lớp. Ví dụ, màu sắc có thể là đặc trưng kém đối với những quả táo nếu chúng xuất hiện theo các mức độ chín không ổn định. Tức là, một quả táo xanh và một quả táo chín (đỏ) có thể rất khác nhauvề màu sắc, mặc dù cả hai đều thuộc lớp đối tượng là các quả táo. 3. Tính độc lập. Nhiều đặc trưng được sử dụng khác nhau không được tương quan với nhau. Đường kính và trọng lượng của một trái cây sẽ tạo thành các đặc trưng tương quan chặt, vì trọng lượng tỷ lệ gần đúng với đường kính mũ ba. Bài toán mà cả đường kính lẫn trọng lượng về bản chất đều phản ánh cùng một tính chất, ấy là kích thước của trái cây. Trong khi các đặc trưng tương quan chặt có thể kết hợp (ví dụ, bằng cách lấy trung bình tất cả chúng cùng với nhau) 401 để làm giảm tính nhậy cảm đối với nhiễu, thì nói chung chúng lại không được sử dụng như những đặc trưng độc lập. 4. Các số nhỏ. Tính phức tạp của một hệ thống nhận dạng mẫu tăng nhanh chóng theo kích cỡ (số các đặc trưng được dùng) của hệ thống. Quan trọng hơn là số các đối tượng cần có để huấn luyện bộ phân lớp và để đo lường hiệu suất của nó tăng theo cấp số mũ với số các đặc trưng. Trong vài trường hợp, để có thể đạt được lượng dữ liệu cần thiết cho việc huấn luyện bộ phân lớp tương xứng chỉ là điều hão huyền. Cuối cùng, việc thêm các đặc trưng nhiễu hay đặc trưng tương quan chặt với các đặc trưng hiện có có thể làm suy giảmhiệu suất của những bộ phân lớp, đặc biệt bởi vì kích thước giới hạn của tập huấn luyện. Trong thực tế, quá trình chọn lựa đặc trưng thường bao gồm cả việc kiểm tra tập các đặc trưng hợp lý quatrực giác và việc giảm tập xuống còn một số các đặc trưng tốt nhất có thể chấp nhận. Thường có ít hoặc không có sẵn các đặc trưng lý tưởng dưới dạng các tính chất đã nói ở trên. 20.2.2. Thiết kế bộ phân lớp Thiết kế bộ phân lớp bao gồm việc thiết lập cấu trúc logic của bộ phân lớp và cơ sở toán học của quy tắc phân lớp. Thông thường, đối với mỗi đối tượng thường gặp, sự phân lớp tính toán, với từng lớp, giá trị báo hiệu (bằng độ lớn của nó) mức độ mà đối tượng đó tương tự đối tượng điển hình của lớp đó. Giá trị này được tính như một hàm đặc trưng và nó được dùng để chọn lớp gần giống với công việc được giao nhất. Hầu hết các quy tắc quyết định bộ phân lớp đều giảm đến một vạch ngưỡng phân chia các không gian kích cỡ thành các vùng rời nhau, mỗi lớp một (hoặc nhiều) vùng. Mỗi vùng (phạm vi các giá trị đặc trưng) ứng với một lớp riêng lẻ. Nếu các giá trị đặc trưng nằm trong một vùng riêng biệt thì đối tượng được ấn định cho lớp tương ứng. Trong vài trường hợp, một hoặc nhiều vùng như vậy có thể ứng với một lớp “không xác định”. 20.2.3. Huấn luyện bộ phân lớp Một khi các quy tắc quyết định cơ bản của bộ phân lớp đã được thiết lập thì ta phải xác định các giá trị ngưỡng riêng biệt phân tách các lớp. Điều này thường được thực hiện bằng cách huấn luyện bộ phân lớp theo nhóm các đối tượng đã biết. Tập huấn luyện là một tập hợp các đối tượng từ mỗi lớp đã được nhận biết trước đó bằng một phương pháp chính xác nào đó. Các đối tượng trong tập huấn luyện được đo, và không gian kích cỡ được phân chia, bằng các bề mặt quyết định, thành các vùng mà độ chính xác của bộ phân lớp là tối đa khi nó hoạt động trên tập huấn luyện. Khi huấn luyện một bộ phân lớp, ta có thể sử dụng quy tắc đơn lẻ, ví dụ như tối thiểu hoá tổng các sai số phân lớp. Nếu một vài sự phân lớp sai lầm có thể gây rắc rối hơn những cái khác thì ta có thể thiết lập một hàm giá để giải thích điều này bằng cách cân nhắc các sai số khác nhau một cách gần đúng. Các đường quyết định sau đó được đặt vào để tối thiểu hoá toàn bộ “giá” của việc thao tác bộ phân lớp. Nếu tập huấn luyện là biểu diễn của các đối tượng nói chung thì bộ phân lớp loại cũng phải thực hiện xung quanh các đối tượng mới giống như nó đã từng thực hiện trên tập huấn luyện. Có được một tập huấn luyện đủ lớn ...
Tìm kiếm theo từ khóa liên quan:
Xử lý ảnh Bài giảng Xử lý ảnh Nhận dạng mẫu Chọn lọc đặc trưng Thiết kế bộ phân lớp Chọn lựa đặc trưngGợi ý tài liệu liên quan:
-
Phương pháp truyền dữ liệu giữa hai điện thoại thông minh qua môi trường ánh sáng nhìn thấy
6 trang 327 0 0 -
Đồ án: Kỹ thuật xử lý ảnh sử dụng biến đổi Wavelet
41 trang 219 0 0 -
Xây dựng công cụ nhận dạng khuôn mặt theo thời gian thực hiện trên nền hệ điều hành mã nguồn mỡ
7 trang 212 0 0 -
Đồ án tốt nghiệp: Ứng dụng xử lý ảnh trong hệ thống phân loại sản phẩm
123 trang 201 0 0 -
Đề cương chi tiết môn học Kỹ thuật đồ họa và xử lý ảnh
5 trang 175 1 0 -
Bài giảng Xử lý ảnh - Trần Quang Đức
209 trang 173 1 0 -
Đồ án tốt nghiệp: Ứng dụng camera 3D trong việc phân loại sản phẩm theo hình dạng và kích thước
83 trang 114 0 0 -
578 trang 103 0 0
-
Phương pháp Xử lý ảnh bằng kỹ thuật số: Phần 1
92 trang 101 0 0 -
Giáo trình Nhận dạng và xử lý ảnh: Phần 2
137 trang 94 0 0