Bài tiểu luận: Tối ưu hóa kết cấu
Số trang: 21
Loại file: doc
Dung lượng: 824.50 KB
Lượt xem: 18
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Bài tiểu luận "Tối ưu hóa kết cấu" giới thiệu đến các bạn những nội dung về thuật toán bầy kiến, ý nghĩa tối ưu hóa kết cấu, nội dung tối ưu hóa kết cấu, áp dụng tối ưu hóa kết cấu,... Mời các bạn cùng tham khảo nội dung bài tiểu luận để có thêm tài liệu phục vụ nhu cầu học tập và nghiên cứu.
Nội dung trích xuất từ tài liệu:
Bài tiểu luận: Tối ưu hóa kết cấu TỐI ƯU HÓA KẾT CẤU GVHD: TS VŨ TRƯỜNG VŨ MỤC LỤC I.1: GIỚI THIỆU CHUNG 2 I.2: Ý NGHĨA 3 I.2.1: Ý nghĩa khoa học 3 I.2.2: Ý nghĩa thực tiễn 3 I.3: ỨNG DỤNG 3 I.4: THUẬT TOÁN BẦY KIẾN 4 I.4.1: Giới thiệu chung về thuật toán bầy kiến 4 I.4.2: Sơ đồ chung của thuật toán bầy kiến 8 I.4.3: Nội dung của thuật toán bầy kiến 10 I.4.3.1: Mã giả cho thuật toán 11 I.4.3.2: Các sơ đồ thuật toán 12 I.4.3.2.1: Thuật toán Ant System (AS) 13 I.4.3.2.2: Thuật toán Ant Colony System(ACS) 14 I.4.3.2.3: Thuật toán Max–Min Ant System(MMAS) 16 I.4.3.2.4: Thuật toán RankBased Ant System(RBAS) 17 I.4.3.2.5: Thuật toán BestWorst Ant System(BWAS) 18 I.5: ÁP DỤNG 20 Nhóm: 3 Trang 1 TỐI ƯU HÓA KẾT CẤU GVHD: TS VŨ TRƯỜNG VŨ I.1: GI ỚI THIỆU CHUNG Trước khi nói về nội dung thuật toán bầy kiến ta đi tìm hiểu về đàn kiến trong tự nhiên, xem các đặc điểm và cách hoạt động của đàn kiến tự nhiên. Từ đó có thể đưa ra các đặc điểm cần thiết, tác động tới thuật toán bầy kiến. Hình: Đàn kiến trong tự nhiên Đàn kiến tự nhiên: Là một loài có tổ chức cao, mỗi con kiến khi di chuyển sẽ để lại một lượng thông tin pheromone trên mặt đất. Đây là phương tiện để đánh dấu và để đàn kiến trao đổi thông tin khi tìm kiếm thức ăn. Khi đi tìm kiếm thức ăn: Sau khi tìm thấy nguồn thức ăn, thì mỗi con kiến sẽ tìm ra đường đi của nó để đi từ tổ tới nguồn thức ăn. Chúng sẽ giao tiếp trao đổi thông tin với nhau, sau một thời gian cả đàn kiến gần như tìm ra và đi theo con đường ngắn nhất từ tổ tới nguồn thức ăn. Sau khi nghiên cứu cho thấy cơ chế hoạt động của đàn kiến tự nhiên trong quá trình tìm đuờng đi ngắn nhất từ tổ tới nguồn thức ăn dựa trên các nguyên tắc sau: Đường đi ngắn nhất được xác định thông qua các thông tin về Pheromone, là một loại hóa chất mà các con kiến dùng để trao đổi thông tin với nhau. Khi di chuyển thì mỗi con kiến sẽ để lại một lượng Pheromone trên đường đi mà nó đã đi qua. Trong quá trình di chuyển tìm đường đi, các con kiến sẽ được định hướng bởi các thông tin pheromone đã được để lại trên đường đi. Mỗi con kiến di chuyển một cách ngẫu nhiên khi không có thông tin về pheromone trên đoạn đường đi. Nhóm: 3 Trang 2 TỐI ƯU HÓA KẾT CẤU GVHD: TS VŨ TRƯỜNG VŨ Các đường đi có lượng pheromone lớn thì xác suất được chọn càng cao, ngược lại các đoạn đường có lượng pheromone thấp thì xác suất được chọn là bé. Từ việc nghiên cứu cơ chế hoạt động của đàn kiến tự nhiên đã cho ra đời thuật toán bầy kiến. Một cách không chính thức có thể nói thuật toán bầy kiến là một bầy kiến nhân tạo để giải bài toán đưa ra. Tối ưu đàn kiến (ACO) Là một đàn kiến nhân tạo (Artificial Ants) mô phỏng các hoạt động của đàn kiến tự nhiên. Trong đó hoạt động chính của các con kiến nhân tạo là cách tìm đường đi từ tổ tới nguồn thức ăn của các con kiến tự nhiên. Đến nay nó được cải tiến đa dạng và có nhiều ứng dụng. Trước khi giới thiệu phương pháp ACO, luận án giới thiệu phương thức trao đổi thông tin gián tiếp của các con kiến và mô hình kiến nhân tạo. Trên đường đi, mỗi con kiến để lại một chất hóa học gọi là vết mùi dùng để đánh dấu đường đi. Bằng cách cảm nhận vết mùi, kiến có thể lần theo đường đi đến nguồn thức ăn được các con kiến khác khám phá theo phương thức chọn ngẫu nhiên có định hướng theo nồng độ vết mùi để xác định đường đi ngắn nhất từ tổ đến nguồn thức ăn. Ngoài ra các con kiến có thể trao đổi thông tin có được với nhau, thực hiện tính toán cần thiết, cập nhật mùi… Nhờ các con kiến nhân tạo này (về sau cũng gọi đơn giản là kiến) Dorigo (1991) đã xây dựng hệ kiến (AS) giải bài toán người chào hàng, hiệu quả của nó so với các phương pháp mô phỏng tự nhiên khác như AS, GA đã được kiểm chứng bằng thực nghiệm và được phát triển, ứng dụng phong phú với tên gọi chung là phương pháp ACO. I.2: Ý NGHĨA I.2.1: Ý nghĩa khoa h ọc Áp dụng lý thuyết của thuật toán đàn kiến ACO để áp dụng trong các bài toán tối ưu tổ hợp So ...
Nội dung trích xuất từ tài liệu:
Bài tiểu luận: Tối ưu hóa kết cấu TỐI ƯU HÓA KẾT CẤU GVHD: TS VŨ TRƯỜNG VŨ MỤC LỤC I.1: GIỚI THIỆU CHUNG 2 I.2: Ý NGHĨA 3 I.2.1: Ý nghĩa khoa học 3 I.2.2: Ý nghĩa thực tiễn 3 I.3: ỨNG DỤNG 3 I.4: THUẬT TOÁN BẦY KIẾN 4 I.4.1: Giới thiệu chung về thuật toán bầy kiến 4 I.4.2: Sơ đồ chung của thuật toán bầy kiến 8 I.4.3: Nội dung của thuật toán bầy kiến 10 I.4.3.1: Mã giả cho thuật toán 11 I.4.3.2: Các sơ đồ thuật toán 12 I.4.3.2.1: Thuật toán Ant System (AS) 13 I.4.3.2.2: Thuật toán Ant Colony System(ACS) 14 I.4.3.2.3: Thuật toán Max–Min Ant System(MMAS) 16 I.4.3.2.4: Thuật toán RankBased Ant System(RBAS) 17 I.4.3.2.5: Thuật toán BestWorst Ant System(BWAS) 18 I.5: ÁP DỤNG 20 Nhóm: 3 Trang 1 TỐI ƯU HÓA KẾT CẤU GVHD: TS VŨ TRƯỜNG VŨ I.1: GI ỚI THIỆU CHUNG Trước khi nói về nội dung thuật toán bầy kiến ta đi tìm hiểu về đàn kiến trong tự nhiên, xem các đặc điểm và cách hoạt động của đàn kiến tự nhiên. Từ đó có thể đưa ra các đặc điểm cần thiết, tác động tới thuật toán bầy kiến. Hình: Đàn kiến trong tự nhiên Đàn kiến tự nhiên: Là một loài có tổ chức cao, mỗi con kiến khi di chuyển sẽ để lại một lượng thông tin pheromone trên mặt đất. Đây là phương tiện để đánh dấu và để đàn kiến trao đổi thông tin khi tìm kiếm thức ăn. Khi đi tìm kiếm thức ăn: Sau khi tìm thấy nguồn thức ăn, thì mỗi con kiến sẽ tìm ra đường đi của nó để đi từ tổ tới nguồn thức ăn. Chúng sẽ giao tiếp trao đổi thông tin với nhau, sau một thời gian cả đàn kiến gần như tìm ra và đi theo con đường ngắn nhất từ tổ tới nguồn thức ăn. Sau khi nghiên cứu cho thấy cơ chế hoạt động của đàn kiến tự nhiên trong quá trình tìm đuờng đi ngắn nhất từ tổ tới nguồn thức ăn dựa trên các nguyên tắc sau: Đường đi ngắn nhất được xác định thông qua các thông tin về Pheromone, là một loại hóa chất mà các con kiến dùng để trao đổi thông tin với nhau. Khi di chuyển thì mỗi con kiến sẽ để lại một lượng Pheromone trên đường đi mà nó đã đi qua. Trong quá trình di chuyển tìm đường đi, các con kiến sẽ được định hướng bởi các thông tin pheromone đã được để lại trên đường đi. Mỗi con kiến di chuyển một cách ngẫu nhiên khi không có thông tin về pheromone trên đoạn đường đi. Nhóm: 3 Trang 2 TỐI ƯU HÓA KẾT CẤU GVHD: TS VŨ TRƯỜNG VŨ Các đường đi có lượng pheromone lớn thì xác suất được chọn càng cao, ngược lại các đoạn đường có lượng pheromone thấp thì xác suất được chọn là bé. Từ việc nghiên cứu cơ chế hoạt động của đàn kiến tự nhiên đã cho ra đời thuật toán bầy kiến. Một cách không chính thức có thể nói thuật toán bầy kiến là một bầy kiến nhân tạo để giải bài toán đưa ra. Tối ưu đàn kiến (ACO) Là một đàn kiến nhân tạo (Artificial Ants) mô phỏng các hoạt động của đàn kiến tự nhiên. Trong đó hoạt động chính của các con kiến nhân tạo là cách tìm đường đi từ tổ tới nguồn thức ăn của các con kiến tự nhiên. Đến nay nó được cải tiến đa dạng và có nhiều ứng dụng. Trước khi giới thiệu phương pháp ACO, luận án giới thiệu phương thức trao đổi thông tin gián tiếp của các con kiến và mô hình kiến nhân tạo. Trên đường đi, mỗi con kiến để lại một chất hóa học gọi là vết mùi dùng để đánh dấu đường đi. Bằng cách cảm nhận vết mùi, kiến có thể lần theo đường đi đến nguồn thức ăn được các con kiến khác khám phá theo phương thức chọn ngẫu nhiên có định hướng theo nồng độ vết mùi để xác định đường đi ngắn nhất từ tổ đến nguồn thức ăn. Ngoài ra các con kiến có thể trao đổi thông tin có được với nhau, thực hiện tính toán cần thiết, cập nhật mùi… Nhờ các con kiến nhân tạo này (về sau cũng gọi đơn giản là kiến) Dorigo (1991) đã xây dựng hệ kiến (AS) giải bài toán người chào hàng, hiệu quả của nó so với các phương pháp mô phỏng tự nhiên khác như AS, GA đã được kiểm chứng bằng thực nghiệm và được phát triển, ứng dụng phong phú với tên gọi chung là phương pháp ACO. I.2: Ý NGHĨA I.2.1: Ý nghĩa khoa h ọc Áp dụng lý thuyết của thuật toán đàn kiến ACO để áp dụng trong các bài toán tối ưu tổ hợp So ...
Tìm kiếm theo từ khóa liên quan:
Bài tiểu luận Tối ưu hóa thiết kế Thuật toán đàn kiến Tối ưu hóa Ý nghĩa tối ưu hóa kết cấuTài liệu liên quan:
-
Bài tiểu luận: Đạo đức kinh doanh và trách nhiệm xã hội của Tập đoàn TH True Milk
28 trang 830 2 0 -
Tiểu luận Quản trị chiến lược: Phân tích chiến lược kinh doanh của công ty Biti's
22 trang 551 0 0 -
Bài tiểu luận kết thúc học phần: Phân tích hoạt động kinh doanh
34 trang 384 0 0 -
Bài tiêu luận: Xây dựng tài liệu kỹ thuật cho mã hàng áo Jacket 2 lớp và áo Vest nữ 2 lớp
79 trang 337 0 0 -
Tiểu luận: Sáng tác thiếu nhi của Tô Hoài và tính cách Dế Mèn qua truyện Dế Mèn phiêu lưu ký
17 trang 289 0 0 -
Tóm tắt luận án tiến sỹ Một số vấn đề tối ưu hóa và nâng cao hiệu quả trong xử lý thông tin hình ảnh
28 trang 225 0 0 -
Tiểu luận: Quá trình công nghệ sản xuất xúc xích heo tiệt trùng
86 trang 217 0 0 -
Bài tiểu luận kết thúc học phần: Quản lý dự án đầu tư
22 trang 211 0 0 -
24 trang 187 0 0
-
30 trang 182 1 0