Thông tin tài liệu:
Tham khảo tài liệu bất đẳng thức luyện thi đại học, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Bất đẳng thức luyện thi đại họcPhú Khánh và http://www.toanthpt.net G i t ng các em tài li u c a th y Lê Anh Dũng – Kiên Giang.TÌM L I GI I CÁC BÀI TOÁN B T ð NG TH C, GTLN – GTNN NH D ðOÁN D U B NG Lê Anh Dũng (G/v THPT chuyên Huỳnh M n ð t – Kiên Giang) Các em h/s và các b n thân m n, trong các ñ thi TSðH thư ng có m t câu V là câukhó (ñ ch n các cao th võ lâm) câu này nh ng năm g n ñây thư ng cho dư i d ng cácbài toán BðT. Và thư ng thì các sĩ t không bi t b t ñ u t ñâu ñ gi i quy t nó. Bài vi tnày tôi s truy n ñ t cho các b n m t “tuy t chiêu” võ công ñ c ñáo (ch c n m t chiêu thôi).Sau khi h c ñư c “tuy t chiêu” này các b n s th y các v n ñ tr nên r t ñơn gi n. ð lĩnh h i ñư c “tuy t chiêu” mà tôi t ng h p t vô s các chiêu th c c a các mônphái khác thì trư c tiên các b n ph i n m ñư c m t s “chiêu th c” b n ñã.1. B t ð ng th c Côsi (các chiêu này xem trong “ð i s 10”) a. B t ð ng th c Cauchy cho 2 s : Cho 2 s a, b ≥ 0 .Khi ñó: a + b ≥ 2 ab . D u ‘=’ x y ra khi a = b. b. B t ð ng th c Cauchy cho 3 s : Cho 3 s a, b, c ≥ 0 . Khi ñó ta có: a + b + c ≥ 3 3 abc . D u ‘=’ x y ra khi a = b = c. Nh n d ng: + Tìm nh nh t c a t ng khi bi t tích. + Tìm l n nh t c a tích khi bi t t ng, t ng bình phương. + Ch ng minh t ng l n hơn tích, tích chia t ng (t ng bình phương, . . .) + Dùng nh p các t ng, t ng ngh ch ñ o, . . . thành m t. Các BðT cơ b n liên quan hay dùng : 1. a2 + b2 ≥ 2ab. 2. a2 + b2 + c2 ≥ ab + ac + bc .D u ‘=’ khi a = b = c. 1 3. a2 + b2 + c2 ≥ (a + b + c)2 ≥ ab + ac + bc . D u ‘=’ x y ra khi a = b = c. 3 1 1 1 1 4 4. V i a, b > 0. Ta có : (a + b)( + ) ≥ 4 . D u ‘=’ x y ra khi a = b (hay : + ≥ ) a b a b a+ b 1 1 1 5. V i a, b, c > 0. Ta có : (a + b + c)( + + ) ≥ 9 . D u ‘=’ x y ra khi a = b = c (hay : a b c 1 1 1 9 + + ≥ ). a b c a+ b+ c Ý nghĩa c a các b t ñ ng th c 4, 5 là cho phép ta nh p các phân s thành m t do ñó r t thu n l i cho vi c xét hàm v i m t n. 2. B t ð ng Th c Bunhiacopxki –BðT Tr Tuy t ð i : Trong chương trình thi ð i H c chúng ta ch ñư c áp d ng BðT Cauchy cho 2 và 3 s không âm và b t ñ ng th c Bunhiacopxki cho 2 c p s . a1 .b1 + a2 .b2 ≤ (a1 + a2 )( b1 + b 2 ) 2 2 2 2 a1 a2 D u ‘=’ x y ra khi = (N u b d u thì c n thêm ≥ 0 n a) b1 b 2 LÊ ANH DŨNG –GV THPT CHUYÊN HUỲNH M N ð T –R CH GIÁ KIÊN GIANG 1Phú Khánh và http://www.toanthpt.net G i t ng các em tài li u c a th y Lê Anh Dũng – Kiên Giang. b. Nh n d ng: + T ng các c p s có tích không ñ i. + T ng bình phương b ng m t s không ñ i. c. ng d ng + Nh p các t ng bình phương thành m t. 3. Kh o sát hàm s Trên ñây là các v n ñ mà ð i H i Anh Hùng thư ng ra ñ ch n cao th . Hi v ng các sĩ t n mñư c các chiêu th c cơ b n này ñ lĩnh h i cho t t. Khi tìm GTNN, GTLN các em thư ng m c ph i sai l m ph bi n trong vi c tìm giá tr c a bi n t i các ñi m ñ t max, min ñó là : th c hi n liên ti p nhi u bư c ñánh giá nhưng d u ‘=’ t i m i bư c là không như nhau do ñó không có d u ‘=’ ñ x y ra ñ ng th c cu i. Xét bài toán: Tìm GTLN c a f(x) = sin5x + 3 cosx, có b n ñã gi i như sau: Ch c n xét trong x ∈ [0 ; π ].Ta có:sin5x ≤ sinx suy ra : f(x) ≤ sinx + 3 cosx 2 π M t khác : sinx + 3 cosx = 2sin(x + )≤ 2 . 3 V y f(x)max = 2. Nh n xét : bài gi i trên sai (bài gi i ñúng xem dư i) do ñã vư ng sai l m trong tìm d u ‘=’. f(x) không th ñ t giá tr b ng 2 ñư c vì ñ t i BðT cu i chúng ta ñã th c hi n 2 phép bi n ñ i : + l n 1: sin5x ≤ sinx ; d u ‘=’ khi x = 0, π /2. + l n 2: 2sin(x + π / 6 ) ≤ 2 ; d u ‘=’ khi x= π / 6 Như v y, khi th c hi n m i bư c bi n ñ i ta thư ng t ñ t ra câu h i: + Khi th c hi n các bư c bi n ñ i như v y thì li u d u ‘=’ có ñ t ñư c bư c cu i cùng không ? + ðánh giá như th nào ñ có th ñưa v v còn l i ñư c hay không ? M c dù bài toán có th th c hi n liên ti p nhi u bư c bi n ñ i nhưng ñ d u ‘=’ ñ t ñư c thì m i bư c d u ‘=’ cũng ph i gi ng như d u ‘=’ ñ ng ...