BỘ ĐIỀU KHIỂN PID SỐ CHO ĐỘNG CƠ DC ỨNG DỤNG ASIC
Số trang: 5
Loại file: pdf
Dung lượng: 354.90 KB
Lượt xem: 25
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Đề tài nghiên cứu thiết kế một ứng dụng của công nghệ ASIC. Sử dụng FPGA thực hiện bộ điều khiển PID số cho động cơ DC. Nhân điều khiển là một bộ vi xử lý chuyên dụng được thiết kế dựa trên cấu trúc MAC (multiplier/accumulator). Với cấu trúc MAC, phương trình sai phân bậc 2 được thực hiện trong 4 chu kỳ xung clock hệ thống, nhờ kết hợp phép cộng dồn và
Nội dung trích xuất từ tài liệu:
BỘ ĐIỀU KHIỂN PID SỐ CHO ĐỘNG CƠ DC ỨNG DỤNG ASIC Tuyển tập Báo cáo “Hội nghị Sinh viên Nghiên cứu Khoa học” lần thứ 6 Đại học Đà Nẵng - 2008 BỘ ĐIỀU KHIỂN PID SỐ CHO ĐỘNG CƠ DC ỨNG DỤNG ASIC APPLICATIONS OF ASIC TECHNOLOGY IN DESGINING A DIGITAL PID CONTROLLER FOR DC MOTOR SVTH: VŨ TÚ ANH - O3ĐT2 Khoa Điện Tử Viễn Thông, Trường Đại Học Bách Khoa GVHD: KS. NGUYỄN KHÁNH AN, ThS. NGUYỄN BÁ HỘI, KS. NGUYỄN TRUNG KIÊN Khoa Điện Tử Viễn Thông, Trường Đại Học Bách Khoa TÓM TẮT: Đề tài nghiên cứu thiết kế một ứng dụng của công nghệ ASIC. Sử dụng FPGA thực hiện bộ điều khiển PID số cho động cơ DC. Nhân điều khiển là một bộ v i xử lý chuyên dụng được thiết kế dựa trên cấu trúc MAC (multiplier/accumulator). Với cấu trúc MAC, phương trình sai phân bậc 2 được thực hiện trong 4 chu kỳ xung clock hệ thống, nhờ kết hợp phép cộng dồn và phép nhân trong một chu kỳ xung clock đơn. Thử nghiệm với FPGA Spartan-3AN cho phép tần số clock hệ thống đến 62MHz. ABSTRACT: This final year project aims at using one of applications of ASIC technology in desgining a digital PID controller for DC motor. The controller core is an application specific microprocessor based on MAC (multiplier/accumulator). With this MAC architecture, the second order differential equation is able to be executed in 4 clock cycles, due to accumulating and multiplying during a single clock cycle. Testing on FPGA Spartan -3AN allows clock frequency up to 62MHz. 1. Mở đầu Cùng với sự phát triển nhanh chóng của khoa học công nghệ, kỹ thuật điều khiển tự động được ứng dụng rộng rãi và đóng vai trò quan trọng trong nhiều lĩnh vực, theo đó đòi hỏi về chất lượng, cũng như tốc độ của các bộ điều khiển ngày càng cao. Trong nhiều trường hợp các bộ điều khiển thông thường không đáp ứng được, chúng ta thường phải trả giá cao cho những tiêu chí này. Có một hướng giải quyết vấn đề này đó là ứng dụng các công nghệ mới. Với công nghệ ASIC chúng ta có thể phát triển các bộ điều khiển theo hướng chuyên dụng cho các ứng dụng cụ thể. Và tạo ra các bộ điều khiển với giá thành thấp hơn, năng lượng tiêu thụ ít hơn. Các giải thuật điều khiển được xử lý bằng phần cứng sẽ có tốc độ cao hơn hẳn với cùng một công nghệ. Khả năng lập trình lại, khả năng tích hợp hệ thống trên một chíp cho ta sự linh hoạt, độ tin cậy cao, tiết kiệm không gian hệ thống. Trong giới hạn, đề tài phát triển một ứng dụng mang tính thử nghiệm đó là thiết kế bộ điều khiển PID số cho động cơ DC. Trong thực tế các bộ điều khiển động cơ thường sử dụng vi điều khiển. Các bộ điều khiển chất lượng cao có thể sử dụng DSP. Ngày nay đã xuất hiện thế hệ chip lai mới như ADI's Blackfin và TI's MSP430 kết hợp các ưu điểm của vi điều khiển và khả năng tính toán, xử lý tín hiệu nhanh với chu kỳ vòng lặp xác định của DSP. Tuy nhiên một bộ điều khiển chuyên dụng vẫn cho ta nhiều lợi ích hơn. 2. Tổng quan Động cơ DC là một đối tượng điều khiển thường gặp trong thực tế, nó ứng dụng rộng rãi trong công nghiệp, dân dụng, quốc phòng... Thiết kế bộ điều khiển PID số cũng là một bài toán khá quen thuộc nhờ tính đơn giản nhưng khá hiệu quả của nó. Vấn đề là các bộ điều khiển này thường bị giới hạn về tốc độ, độ chính xác (do độ rộng bit dữ liệu giới hạn) nếu sử 43 Tuyển tập Báo cáo “Hội nghị Sinh viên Nghiên cứu Khoa học” lần thứ 6 Đại học Đà Nẵng - 2008 dụng vi điều khiển. Sử dụng DSP, PC hay các bộ vi xử lý thế hệ mới có thể giải quyết được các vấn đề trên nhưng thường không hiệu quả do giá thành cao, cồng kềnh, tiêu tốn nhiều năng lượng… Để giải quyết vấn đề này, đề tài tập trung xây dựng bộ điều khiển chuyên dụng, thiết kế, kiểm tra và thử nghiệm trên FPGA (Spartan III). 3. Nội dung 3.1. Bộ điều khiển PID số cho động cơ DC Động cơ DC: Áp dụng định luật Kirchoff và định luật Newton cho phần điện và phần cơ của động cơ DC: di (t ) E (t ) , với E (t ) K (t ) U (t ) Ri (t ) L dt d (t ) M (t ) M t (t ) B (t ) J , với M (t ) Ki(t ) dt Trong đó: R, L : điện trở và điện cảm của động cơ K : là hệ số; B : là hệ số ma sát; J : moment quán tính Qua phép biến đổi Laplace ta có mô hình toán học đầy đủ của động cơ DC như hình 1 Hình 1. Mô hình toán học của động cơ DC Bộ điều khiển PID: de (t ) U (t ) K P e(t ) K I e(t )dt K D Phương trình toán học: dt KI GC ( s ) K P KDs Ảnh Laplace: s z 1 KD z 1 KIT GC ( z ) K P Rời rạc hóa bằng biến đổi Z: z 1 T z 2 ...
Nội dung trích xuất từ tài liệu:
BỘ ĐIỀU KHIỂN PID SỐ CHO ĐỘNG CƠ DC ỨNG DỤNG ASIC Tuyển tập Báo cáo “Hội nghị Sinh viên Nghiên cứu Khoa học” lần thứ 6 Đại học Đà Nẵng - 2008 BỘ ĐIỀU KHIỂN PID SỐ CHO ĐỘNG CƠ DC ỨNG DỤNG ASIC APPLICATIONS OF ASIC TECHNOLOGY IN DESGINING A DIGITAL PID CONTROLLER FOR DC MOTOR SVTH: VŨ TÚ ANH - O3ĐT2 Khoa Điện Tử Viễn Thông, Trường Đại Học Bách Khoa GVHD: KS. NGUYỄN KHÁNH AN, ThS. NGUYỄN BÁ HỘI, KS. NGUYỄN TRUNG KIÊN Khoa Điện Tử Viễn Thông, Trường Đại Học Bách Khoa TÓM TẮT: Đề tài nghiên cứu thiết kế một ứng dụng của công nghệ ASIC. Sử dụng FPGA thực hiện bộ điều khiển PID số cho động cơ DC. Nhân điều khiển là một bộ v i xử lý chuyên dụng được thiết kế dựa trên cấu trúc MAC (multiplier/accumulator). Với cấu trúc MAC, phương trình sai phân bậc 2 được thực hiện trong 4 chu kỳ xung clock hệ thống, nhờ kết hợp phép cộng dồn và phép nhân trong một chu kỳ xung clock đơn. Thử nghiệm với FPGA Spartan-3AN cho phép tần số clock hệ thống đến 62MHz. ABSTRACT: This final year project aims at using one of applications of ASIC technology in desgining a digital PID controller for DC motor. The controller core is an application specific microprocessor based on MAC (multiplier/accumulator). With this MAC architecture, the second order differential equation is able to be executed in 4 clock cycles, due to accumulating and multiplying during a single clock cycle. Testing on FPGA Spartan -3AN allows clock frequency up to 62MHz. 1. Mở đầu Cùng với sự phát triển nhanh chóng của khoa học công nghệ, kỹ thuật điều khiển tự động được ứng dụng rộng rãi và đóng vai trò quan trọng trong nhiều lĩnh vực, theo đó đòi hỏi về chất lượng, cũng như tốc độ của các bộ điều khiển ngày càng cao. Trong nhiều trường hợp các bộ điều khiển thông thường không đáp ứng được, chúng ta thường phải trả giá cao cho những tiêu chí này. Có một hướng giải quyết vấn đề này đó là ứng dụng các công nghệ mới. Với công nghệ ASIC chúng ta có thể phát triển các bộ điều khiển theo hướng chuyên dụng cho các ứng dụng cụ thể. Và tạo ra các bộ điều khiển với giá thành thấp hơn, năng lượng tiêu thụ ít hơn. Các giải thuật điều khiển được xử lý bằng phần cứng sẽ có tốc độ cao hơn hẳn với cùng một công nghệ. Khả năng lập trình lại, khả năng tích hợp hệ thống trên một chíp cho ta sự linh hoạt, độ tin cậy cao, tiết kiệm không gian hệ thống. Trong giới hạn, đề tài phát triển một ứng dụng mang tính thử nghiệm đó là thiết kế bộ điều khiển PID số cho động cơ DC. Trong thực tế các bộ điều khiển động cơ thường sử dụng vi điều khiển. Các bộ điều khiển chất lượng cao có thể sử dụng DSP. Ngày nay đã xuất hiện thế hệ chip lai mới như ADI's Blackfin và TI's MSP430 kết hợp các ưu điểm của vi điều khiển và khả năng tính toán, xử lý tín hiệu nhanh với chu kỳ vòng lặp xác định của DSP. Tuy nhiên một bộ điều khiển chuyên dụng vẫn cho ta nhiều lợi ích hơn. 2. Tổng quan Động cơ DC là một đối tượng điều khiển thường gặp trong thực tế, nó ứng dụng rộng rãi trong công nghiệp, dân dụng, quốc phòng... Thiết kế bộ điều khiển PID số cũng là một bài toán khá quen thuộc nhờ tính đơn giản nhưng khá hiệu quả của nó. Vấn đề là các bộ điều khiển này thường bị giới hạn về tốc độ, độ chính xác (do độ rộng bit dữ liệu giới hạn) nếu sử 43 Tuyển tập Báo cáo “Hội nghị Sinh viên Nghiên cứu Khoa học” lần thứ 6 Đại học Đà Nẵng - 2008 dụng vi điều khiển. Sử dụng DSP, PC hay các bộ vi xử lý thế hệ mới có thể giải quyết được các vấn đề trên nhưng thường không hiệu quả do giá thành cao, cồng kềnh, tiêu tốn nhiều năng lượng… Để giải quyết vấn đề này, đề tài tập trung xây dựng bộ điều khiển chuyên dụng, thiết kế, kiểm tra và thử nghiệm trên FPGA (Spartan III). 3. Nội dung 3.1. Bộ điều khiển PID số cho động cơ DC Động cơ DC: Áp dụng định luật Kirchoff và định luật Newton cho phần điện và phần cơ của động cơ DC: di (t ) E (t ) , với E (t ) K (t ) U (t ) Ri (t ) L dt d (t ) M (t ) M t (t ) B (t ) J , với M (t ) Ki(t ) dt Trong đó: R, L : điện trở và điện cảm của động cơ K : là hệ số; B : là hệ số ma sát; J : moment quán tính Qua phép biến đổi Laplace ta có mô hình toán học đầy đủ của động cơ DC như hình 1 Hình 1. Mô hình toán học của động cơ DC Bộ điều khiển PID: de (t ) U (t ) K P e(t ) K I e(t )dt K D Phương trình toán học: dt KI GC ( s ) K P KDs Ảnh Laplace: s z 1 KD z 1 KIT GC ( z ) K P Rời rạc hóa bằng biến đổi Z: z 1 T z 2 ...
Tìm kiếm theo từ khóa liên quan:
linh kiện điện tử điện tử viễn thông bộ điều khiển PI ứng dụng ASIC bộ vi xử lýTài liệu liên quan:
-
Đề cương chi tiết học phần Trí tuệ nhân tạo
12 trang 441 0 0 -
Đề cương chi tiết học phần Vi xử lý
12 trang 298 0 0 -
Báo cáo thực tập điện tử - Phan Lê Quốc Chiến
73 trang 246 0 0 -
Giáo trình Linh kiện điện tử: Phần 2 - TS. Nguyễn Tấn Phước
78 trang 245 1 0 -
79 trang 230 0 0
-
Thiết kế, lắp ráp 57 mạch điện thông minh khuếch đại thuật toán: Phần 2
88 trang 224 0 0 -
Đồ án: Kỹ thuật xử lý ảnh sử dụng biến đổi Wavelet
41 trang 219 0 0 -
91 trang 200 0 0
-
12 trang 194 0 0
-
Báo cáo môn học vi xử lý: Khai thác phần mềm Proteus trong mô phỏng điều khiển
33 trang 185 0 0