Danh mục

Các bài toán liên quan khảo sát hàm số

Số trang: 8      Loại file: doc      Dung lượng: 239.00 KB      Lượt xem: 10      Lượt tải: 0    
tailieu_vip

Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo tài liệu các bài toán liên quan khảo sát hàm số, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Các bài toán liên quan khảo sát hàm số Biên sọan: Trần Văn Hùng - THPT Nguyễn Bỉnh Khiêm GIẢI TÍCH 12 Email: tranhung18102000@yahoo.com TIỆM CẬN, KHẢO SÁT HÀM SỐ VÀ CÁC BÀI TOÁN LIÊN QUAN A. Tóm tắt lý thuyết ĐỒ THỊ HÀM SỐ VÀ PHÉP TỊNH TIẾN HỆ TRỤC TOẠ ĐỘ 1. Trong mp(Oxy) cho điểm I(x0;y0) . Gọi IXY là hệrrạ độ mới có gốc to y là I và hai trục IX,IY theo thứ tự có cùng vectơ đơn vị i, j với hai trục Ox, Y Oy M là điểm bất kì của mp, giả sử M(x;y)/(Oxy) và M(X;Y)/(IXY) Tacó: =x = X + x0 = = y = Y + y0 y M Y 2. Phương trình của đường cong đối với hệ toạ độ mới: X Giả sử (C) là đồ thị hàm số y = f(x) đối với hệ Oxy . Tịnh tiến hệ trục X =x = X + x 0 uur 1 Oxy theo vec tơ OI với I(x0;y0) theo công thức đổi trục = ta có x x =y = Y + y 0 phương trình của (C) trong hệ toạ độ IXY là: Y = (X+x0) – y0 TIỆM CẬN 1) Tiệm cận ngang: Đường thẳng y = y0 được gọi là tiệm cận ngang của đồ thị hàm số y = f( ) x nếu xlim f ( x) = y0 hoặc xlim f ( x) = y0 f +y f −y 2) Tiệm cận đứng: Đường thẳng x = x0 được gọi là tiệm cận đứng của đồ thị hàm số y = f( ) x nếu ít nhất một trong các điều kiện sau được thoả mãn: lim− f ( x ) = +f ; lim+ f ( x) = +; x − x0 + x x0 lim f ( x ) = −f ; lim+ f ( x) = −; x − x0− + x x0 3) Tiệm cận xiên: Đuờng thẳng y= ax+b (a ẳ 0) được gọi là đường tiệm cận xiên của đồ thị hàm số y = f( ) nếu lim [f ( x) − (ax+b)] = 0 hoặc lim [f ( x) − (ax+b)] = 0 x x f +m x f −m f ( x) - Cách tìm các hệ số a, b của tiệm cận xiên y = ax + b: a = ; b= lim [f ( x) − ax] . lim x x l +m( −; ) + (−= ) - Để tìm tiệm cận xiên của hàm số hữu tỉ ta thực hiện phép chia để viết lại hàm số: ax 2 + bx + c r = px + q +b (a.a 0, r 0) a x + b a x + b KHẢO SÁT HÀM SỐCác bước khảo sát hàm số : Các bước khảo sát hàm đa thức Các bước khảo sát hàm hữu tỷ 1. Tập xác định 1. Tập xác định 2. Sự biến thiên 2. Sự biến thiên - Giới hạn tại vô cực - Giới hạn, tiệm cận - Chiều biến thiên, cực trị - Chiều biến thiên, cực trị - Bảng biến thiên - Bảng biến thiên 3. Đồ thị 3. Đ ...

Tài liệu được xem nhiều: