Thông tin tài liệu:
Tham khảo tài liệu các bài toán về hệ số trong khai triển nhị thức newton (bài tập và hướng dẫn giải), tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Các bài toán về hệ số trong khai triển nhị thức Newton (Bài tập và hướng dẫn giải) TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 02 tháng 04 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 BTVN NGÀY 02-04 Các bài toán về hệ số trong khai triển nhị thức Newton.Bài 1: Tìm hệ số của x3 trong khai triển: n 2 2 . Biết n thõa mãn: C1 + C 3 + ... + C 2 n −1 = 223 x + 2n 2n 2n xBài 2: Cho Cn + 2Cn + 2 Cn ... + 2 Cn = 6561 . 0 1 2 2 n n Tìm hệ số của số hạng chứa x7 và tổng tất cả các hệ số của các số hạng trong khaitriển: n 2 3 x − xBài 3: Tìm số hạng có số mũ của x gấp 2 lần số mũ của y trong khai triển: 28 3 y x − xBài 4: Tìm hệ số của x2008 trong khai triển Newton của đa thức: f ( x) = ( x 2 − 2 ) ( x + 1) 670 670Bài 5: Tìm hệ số của số hạng chứa x4 trong khai triển: f ( x) = ( 1 + 2 x + 3x 2 ) n Biết rằng n là số tự nhiên thõa mãn đẳng thức: Cn .Cn − 2 + 2Cn .Cn + Cn .Cn −3 = 100 2 n 2 3 3 n ………………….Hết………………… BT Viên môn Toán hocmai.vn Trịnh Hào Quang Hocmai.vn – Ngôi trường chung của học trò Việt 1 TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 HDG CÁC BTVN • BTVN NGÀY 02-04Bài 1: Tìm hệ số của x3 trong khai triển: n 2 2 . Biết n thõa mãn: C1 + C 3 + ... + C 2 n −1 = 223 x + 2n 2n 2n x Giải: (1 + x) 2 n = C2 n + C2 n .x + C2 n .x 2 + ... + C2 n −1.x 2 n −1 + C2 n .x 2 n 0 1 2 2n 2n − 2 n −1 2 n −1 (1 − x) = C2 n − C2 n .x + C2 n .x − ... − C2 n .x + C2 n . x 2 n 2n 0 1 2 2 2n Ta có : (1 + x) 2 n − (1 − x) 2 n = 2 ( xC2 n + ... + x 2 n −1C2 n −1 ) 1 2n 2 n −1 22 n Cho x = 1 ⇒ C + ... + C 1 2n 2n = = 22 n −1 = 223 ⇒ 2n − 1 = 23 ⇒ n = 12 2 12 12 − k 2 2 12 2k 2 12 ⇒ x + = ∑ C12 .x . k =∑ C12 .212− k .x 3k −12 k x k =0 x k =0 ⇒ 3k − 12 = 3 ⇒ k = 5 ⇒ HS x 3 là : C12 .27 = 101376 5Bài 2: Cho Cn + 2Cn + 2 Cn ... + 2 Cn = 6561 . 0 1 2 2 n n Tìm hệ số của số hạng chứa x7 và tổng tất cả các hệ số của các số hạng trong khaitriển: n 2 3 x − x Giải: Page 2 of 7 TRUNG TÂM HOCMAI.ONLINE ...