Danh mục

Các bài toán về phép đếm (Bài tập và hướng dẫn giải)

Số trang: 12      Loại file: doc      Dung lượng: 575.50 KB      Lượt xem: 8      Lượt tải: 0    
tailieu_vip

Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo tài liệu các bài toán về phép đếm (bài tập và hướng dẫn giải), tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Các bài toán về phép đếm (Bài tập và hướng dẫn giải) TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 11 tháng 04 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 BTVN NGÀY 11-04 Các bài toán về phép đếm Bài 1: Từ các số 1,2,3,4,5,6 có thể lập được bao nhiêu số tự nhiên, mỗi số có 6 chữ số và thõa mãn điều kiện: Sáu chữ số của mỗi số là khác nhau và tổng của 3 chữ số đầu kém tổng của 3 chữ số sau là 1 đơn vị? Bài 2: Từ 9 số 0,1,2,…,8 có thể lập được bao nhiêu số tự nhiên chẵn mỗi số gồm 7 chữ số khác nhau. Bài 3: Từ 5 bông hồng vàng, 3 bông hồng trắng và 4 bông hồng đỏ ( các bông hồng này xem như đôi một khác nhau), người ta muốn chọn ra 1 bó hoa gồm 7 bông: a) Có mấy cách chọn bó hoa trong đó có đúng 1 bông đỏ. b) Có mấy cách chọn bó hoa trong đó có ít nhất 3 bông vàng và ít nhất 3 bông đỏ? Bài 4: Có 12 giống cây 3 loại: Xoài, mít, ổi .Trong đó có 6 xoài, 4 mít, 2 ổi. Chọn ra 6 giống để trồng. Hỏi có bao nhiêu cách chọn để số cậy mít nhiều hơn số cây ổi? Bài 5: Một đội văn nghệ có 15 người gồm: 10 nam và 5 nữ. Hỏi có bao nhiêu cách lập 1 đội văn nghệ gồm 8 người, sao cho có ít nhất 3 nữ? Bài 6: Có bao nhiêu số lẻ có 6 chữ số chia hết cho 9. Bài 7: Có bao nhiêu số gồm 5 chữ số. Sao cho tổng các chữ số của mỗi số là số lẻ. Bài 8:Hocmai.vn – Ngôi trường chung của học trò Việt 1 TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 11tháng 04 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 Một tổ học sinh có 20 em, trong đó 8 em chỉ biết tiếng Anh, 7 em chỉ biết tiếng Pháp, 5 em chỉ biết tiếng Đức. Cần lập 1 nhóm đi thực tế gồm 3 em biết tiếng Anh, 4 em biết tiếng Pháp và 2 em biết tiếng Đức. Hỏi có bao nhiêu cách lập nhóm?Bài 9: Có 5 tem thư khác nhau và 6 bì thư cũng khác nhau, người ta muốn chọn từ đó ra 3 tem thư, 3 bì thư và dán 3 tem thư ấy vào 3 bì thư đã chọn ( Mỗi bì thư chỉ dán 1 tem). Có bao nhiêu cách làm như vậy?Bài 10: Có nhiêu số tự nhiên gồm 5 chữ số trong đó có 2 chữ số kề nhau phải khác nhau? ………………….Hết……………… BT Viên môn Toán hocmai.vn Trịnh Hào Quang Page 2 of 12 TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 11tháng 04 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 HDG CÁC BTVN • BTVN NGÀY 08-04Bài 1: Chứng minh rằng với k , n ∈ ¥ ; 2 ≤ k ≤ n luôn có: Cn + 4Cn −1 + 6Cn − 2 + 4Cnk −3 + Cn − 4 = Cn + 4 k k k k k Giải: Ta có : VT = Cnk + Cnk −1 + 3 ( Cnk −1 + Cnk − 2 ) + 3 ( Cnk − 2 + Cnk − 3 ) + Cnk − 3 + Cnk − 4 = Cnk+1 + 3Cnk+−11 + 3Cnk+−12 + Cnk+−13 = Cnk+ 1 + Cnk+−11 + 2 ( Cnk+−11 + Cnk+−12 ) + Cnk+−12 + Cnk+−13 = Cnk+ 2 + 2Cnk+−2 + Cnk+−22 = Cnk+ 2 + Cnk+−2 + Cnk+−2 + Cnk+−22 = Cnk+ 3 + Cnk+−3 = Cnk+ 4 = VP 1 1 1 1 ⇒ DPCMBài 2: Chứng minh rằng: 2Cn + 5Cn +1 + 4Cn + 2 + Cn +3 = Cn + 22 + Cn +33 k k k k k+ k+ Giải: Ta có : Cnk + 2Cnk + 1 + Cnk + 2 = Cnk + Cnk + 1 + Cnk + 1 + Cnk + 2 = Cnk++11 + Cnk++12 = Cnk++22 Cnk + 3Cnk + 1 + 3Cnk + 2 + Cnk + 3 = Cnk + Cnk + 1 + 2 ( Cnk + 1 + Cnk + 2 ) + Cnk + 2 + Cnk + 3 = Cnk++11 + 2Cnk++12 + Cnk++13 = Cnk++11 + Cnk++12 + Cnk++12 + Cnk++13 = Cnk++22 + Cnk++23 = Cnk++33 ⇒ 2Cnk + 5Cnk + 1 + 4Cnk + 2 + Cnk + 3 = Cnk++22 + Cnk++33Bài 3: Tính giá trị của biểu thức sau: S = C2010C2010 + C2010C2009 + ... + C2010C2010−−kk + ... + C2010 C10 0 2009 1 2008 k 2010 2009 Page 3 of 12 TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 11tháng 04 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 Giải:Ta có : C2010C2010−−kk = k 2009 2010! . ( 2010 − k ) ! = 2010! ...

Tài liệu được xem nhiều: