Danh mục

CÁC BÀI TOÁN VỀ TÍNH VUÔNG GÓC

Số trang: 4      Loại file: doc      Dung lượng: 111.00 KB      Lượt xem: 16      Lượt tải: 0    
tailieu_vip

Phí tải xuống: 3,000 VND Tải xuống file đầy đủ (4 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

a. Tìm hình chiếu của điểm M lên mặt phẳng (P).Cách giải:- Viết phương trình đường thẳng d đi qua M và vuông góc với mặt phẳng (P).- Tìm giao điểm của d với mặt phẳng (P) là H thì H là hình chiếu của M lên mặt phẳng (P).b. Tìm hình chiếu của điểm M lên đường thẳng d.Cách giải: có 2 cách.- Viết phương trình mặt phẳng (P) đi qua M và vuông góc với d.- Tìm giao điểm của H của (P) với d thì H tự động là hình chiếu của M lên d.Cơ sở của...
Nội dung trích xuất từ tài liệu:
CÁC BÀI TOÁN VỀ TÍNH VUÔNG GÓC CÁC BÀI TOÁN VỀ TÍNH VUÔNG GÓC 1. Lý thuyết a. Tìm hình chiếu của điểm M lên mặt phẳng (P). Cách giải: - Viết phương trình đường thẳng d đi qua M và vuông góc với mặt phẳng (P). - Tìm giao điểm của d với mặt phẳng (P) là H thì H là hình chiếu của M lên mặt phẳng (P). b. Tìm hình chiếu của điểm M lên đường thẳng d. Cách giải: có 2 cách. - Viết phương trình mặt phẳng (P) đi qua M và vuông góc với d. - Tìm giao điểm của H của (P) với d thì H tự động là hình chiếu của M lên d. Cơ sở của cách làm này là áp dụng định lý: đường thẳng a vuông góc với mặt phẳng (α) thì vuông góc với mọi đường thẳng b nằm trong mặt phẳng (α). Cách 2. Đưa phương trình đường thẳng d về dạng tham số nếu phương trình ban đầu của nó có dạng chính tắc hoặc tổng quát. Gọi H là hình chiếu của M lên d. Khi đó tọa độ điểm M có dạng tham số của d do M d . uuuu r uuuu uu uuuu uu r r r r Khi đó ta tính MH thì MH ⊥ ud � MH .ud = 0 . Ta tìm ra được t thế vào tọa độ điểm M ta tìm ra được tọa độ điểm M. c. Cho đường thẳng d và mặt phẳng (P). Viết phương trình hình chiếu ∆ của đường thẳng d lên mặt phẳng (P). Cách giải: uu uu r r uu uu r r r + Nếu d ⊥ ( P ) tức là ud , n p cùng phương. Có thể kiểm ra bẳng cách tính �d , nP � 0 u � �= Thì lúc đó hình chiếu của d lên mặt phẳng (P) là 1 điểm. Điểm đó chính là giao điểm của d với (P). + Nếu d không vuông góc với (P) bao gồm cả d song song với (P). Thì có 2 cách tìm hình chiếu của d lên (P). Cách 1: Viết phương trình mặt phẳng (Q) chứa d và vuông góc với (P). Khi đó giao tuyến của 2 mặt phẳng (P) và (Q) là hình chiếu của d lên mặt phẳng (P). Phương trình hình chiếu ∆ có dạng tổng quát. 1Giáo Viên: Võ Hữu Hoàng Tiến Cách 2: Nếu d cắt (P) thì tìm giao điểm của d và (P) là N. Sau đó lấy 1 điểm M bất kỳ trên đường thẳng d. Viết phương trình đường thẳng d’ đi qua M và vuông góc với (P). Rồi tiếp tục tìm giao điểm của d’ với (P). Lúc này hình chiếu ∆ của d lên (P) chính là đường thẳng đi qua 2 điểm N, M. Viết phương trình đường thẳng đi qua 2 điểm N, M. d. Cho d1 , d2 là 2 đường thẳng chéo nhau. Viết phương trình đường vuông góc chung của d1 , d2. Cách suy nghĩ tìm ra lời giải: uuuu r uuuu r r ur uu r Giả sử MN là đường vuông góc chung của d1 và d2 thì MN ⊥ d1 , MN ⊥ d 2 . Do đó u = �1 , u2 � u � � là vector chỉ phương của đường thẳng MN. Gọi (P) là mặt phẳng xác định bởi MN và đường thẳng d1 , (Q) là mặt phẳng xác định bởi MN và đường thẳng d2 thì MN = (P) ∩(Q). Để ý nếu gọi M0 , N0 là điểm tùy ý của d1 , d 2 thì (P) là mặt phẳng qua M0 và nhận cặp vector r ur r uu r u , u1 làm cặp vector chỉ phương, (Q) là mặt phẳng qua N0 và nhận u , u2 làm cặp vector chỉ phương. Khi đó đường vuông góc chung của d1 , d 2 có phương trình là giao tuyến của 2 mặt phẳng (P) và (Q). Do đó cách giải như sau: Cách 1: uu uur uur r uV = �d1 , ud2 � u � � - Gọi ∆ là đường vuông góc chung của d1 , d 2 suy ra vetor chỉ phương của ∆ là - Gọi (P) là mặt phẳng chứa d1 và ∆ . Viết phương trình mặt phẳng (P). - Gọi (Q) là mặt phẳng chứa d2 và ∆. Viết phương trình mặt phẳng (Q). - Khi đó giao tuyến của (P) và (Q) là đường thẳng ∆ cần tìm. Cách 2: - Đưa phương trình của d1 và d2 về dưới dạng tham số. - Gọi đường vuông chung ∆ cắt d1 và d2 tại M, N. - Viết tọa độ điểm M, N dưới dạng tham số của d1 và d2 . uuuu r uuuu uu uuuu uur r r r uuuu uur uuuu uur r r - Tính MN . Khi đó: MN ⊥ ud1 , MN ⊥ ud2 � MN .ud1 = 0, MN .ud2 = 0 - Giải hệ phương trình trên tìm được 2 tham số t với s của d1 , d2 thế vào tọa độ điểm M, N - Viết ...

Tài liệu được xem nhiều: