Cải thiện hiệu quả mạng neuron hỗ trợ chẩn đoán bệnh da liễu bằng phương pháp thay đổi số neuron trong lớp ẩn
Số trang: 7
Loại file: pdf
Dung lượng: 661.94 KB
Lượt xem: 11
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Hiện nay, việc ứng dụng mạng Neuron nhân tạo hỗ trợ chẩn đoán bệnh lý đang ngày càng phổ biến nên việc cải thiện các chỉ tiêu chất lượng cho các mạng này như độ chính xác chẩn đoán, tốc độ hội tụ của quá trình huấn luyện mạng vốn phụ thuộc vào việc xác định số Neuron trong lớp ẩn cho mạng chẩn đoán đang được quan tâm đặc biệt. Để góp phần giải quyết vấn đề này, bài viết sẽ trình bày việc sử dụng phương pháp thay đổi số Neuron trong lớp ẩn của mạng.
Nội dung trích xuất từ tài liệu:
Cải thiện hiệu quả mạng neuron hỗ trợ chẩn đoán bệnh da liễu bằng phương pháp thay đổi số neuron trong lớp ẩn Kỹ thuật Điện tử – Vật lý – Đo lường CẢI THIỆN HIỆU QUẢ MẠNG NEURON HỖ TRỢ CHẨN ĐOÁN BỆNH DA LIỄU BẰNG PHƯƠNG PHÁP THAY ĐỔI SỐ NEURON TRONG LỚP ẨN Nguyễn Thị Thủy*, Đinh Văn Quang, Đỗ Văn Thanh, Huỳnh Lương Nghĩa Tóm tắt: Hiện nay, việc ứng dụng mạng Neuron nhân tạo hỗ trợ chuẩn đoán bệnh lý đang ngày càng phổ biến nên việc cải thiện các chỉ tiêu chất lượng cho các mạng này như độ chính xác chẩn đoán, tốc độ hội tụ của quá trình huấn luyện mạng vốn phụ thuộc vào việc xác định số Neuron trong lớp ẩn cho mạng chẩn đoán đang được quan tâm đặc biệt. Để góp phần giải quyết vấn đề này, trong bài báo sẽ trình bày việc sử dụng phương pháp thay đổi số Neuron trong lớp ẩn của mạng. Từ khóa: Mạng Neuron nhân tạo; Lớp ẩn. 1. ĐẶT VẤN ĐỀ Trong rất nhiều công trình nghiên cứu ứng dụng mạng Neuron nhân tạo gần đây điển hình như bài báo [1], đã đưa ra kết luận rằng: “Phân loại bằng cách sử dụng các mô hình mạng Neuron nhân tạo cho thấy tỷ lệ phần trăm thành công rất tốt. Mạng Neuron nhân tạo đa lớp truyền thẳng (MLP: multi-layer perceptron networks) được thử nghiệm cho bài toán phân loại bệnh lý dựa trên các thông tin triệu chứng, ảnh chụp y tế và kết quả phân tích xét nghiệm,… là phù hợp để sử dụng trong chẩn đoán y học (hình 1). Hình 1. Chẩn đoán y tế sử dụng mạng Neuron MLP[4]. Thông thường đầu vào của mạng này là các triệu chứng – thuộc tính bệnh lý được ghi nhận bằng các phương thức khác nhau và đầu ra là kết quả chẩn đoán được khẳng định bởi thực tế dùng để luyện (dạy) mạng. Nói chung, các mạng này đã cho kết quả có thể chấp nhận được nhưng khi đầu vào quá lớn có thể dẫn đến giảm độ chính xác và tăng thời gian xử lý (hội tụ chậm hơn). Để giải quyết vấn đề này, nhiều giải pháp đã được đề xuất như chọn lựa cấu trúc tối ưu của mạng Neuron nhân tạo, giảm số lượng kích thước thuộc tính đầu vào, chọn thuật toán luyện mạng thích hợp,… Cũng nhằm mục đích này, ý tưởng phương pháp thay đổi số Neuron trong lớp ẩn của mạng Neuron nhân tạo hỗ trợ chẩn đoán bệnh lý xuất phát từ việc xem xét thành phần của các thuộc tính đầu vào Mạng. Cụ thể các tham số/thuộc tính đầu vào này - vốn được thu nhận bằng các phương pháp đo lường y sinh khác nhau - sẽ tương ứng với 5 cấp cấu trúc của cơ thể như: cơ thể → cơ quan chức năng → mô → tế bào → phân tử sinh học, như được phân loại trong bảng sau: 144 N. T. Thủy, …, H. L. Nghĩa, “Cải thiện hiệu quả mạng Neuron … số Neuron trong lớp ẩn.” Nghiên cứu khoa học công nghệ Bảng 1. Mức cấu trúc của cơ thể và các phương pháp chẩn đoán tương ứng. Số cấp độ Mức cấu trúc Phương pháp chẩn đoán 1 Cấp cơ thể Thu thập triệu chứng ho, đau, sốt… Đo Mạch đập, nhiệt độ, huyết áp,… 2 Cấp cơ quan chức năng Chẩn đoán chức năng (ECG, EEG, EMG,…) 3 Cấp mô CT, MRI, PET SPECT, kính hiển vi nano, phương pháp thử phân tích 4 Cấp độ tế bào: các loại tế bào 5 Cấp độ phân tử sinh học Một cách trực giác chúng ta thấy, thuộc tính đầu vào càng nhiều, càng phức tạp thì số Neuron trong lớp ẩn của mạng phải thay đổi để sao cho việc chẩn đoán đạt được kết quả chính xác nhất. Như vậy, vừa để kiểm tra tính xác đáng và hiệu quả của phương pháp nêu trên vừa để cải thiện chất lượng của mạng chẩn đoán một số bệnh da liễu, trong nghiên cứu này sẽ áp dụng phương pháp gán thay đổi số Neuron trong lớp ẩn đối với mạng Neuron nhân tạo hỗ trợ chẩn đoán bệnh da liễu. 2. XÂY DỰNG MẠNG NEURON NHÂN TẠO HỖ TRỢ CHẨN ĐOÁN BỆNH DA LIỄU VỚI ĐẦU VÀO LÀ CÁC THUỘC TÍNH BỆNH LÝ 2.1. Để thiết kế mạng Neuron trước tiên phải chọn cơ sở dữ liệu phù hợp. Trong trường hợp đang xét ta chọn cơ sở dữ liệu của bệnh da liễu Dermatology Data Set gồm 2 ma trận: ma trận đầu vào mỗi cột tương ứng với các thông số đặc trưng của bản ghi điện tim đồ của một bệnh nhân (DermatologyInputs) và ma trận đầu ra mỗi cột tương ứng với loại bệnh chuẩn đoán của một bệnh nhân (DermatologyTarget) lấy từ kho cơ sở dữ liệu trực tuyến của Đại học Wisconsin [9], được tạo ra vào năm 1998 bởi các tác giả Nilsel Ilter từ Đại học Gazi và Altay Guvenir từ đại học Bilkent ở Thổ Nhĩ Kỳ. Đây là một bộ dữ liệu phản ánh đầy đủ nhất những yếu tố đặc trưng – triệu chứng của bệnh da liễu. Hơn nữa, hiện nay ở Việt Nam chưa có những bộ dữ liệu để phục vụ cho việc chẩn đoán như vậy. Cơ sở dữ liệu này chứa các bản ghi triệu chứng lâm sàng và mô bệnh học thu được từ 366 bệnh nhân với 34 thông số đặc trưng (thuộc tính đầu vào) được liên kết ...
Nội dung trích xuất từ tài liệu:
Cải thiện hiệu quả mạng neuron hỗ trợ chẩn đoán bệnh da liễu bằng phương pháp thay đổi số neuron trong lớp ẩn Kỹ thuật Điện tử – Vật lý – Đo lường CẢI THIỆN HIỆU QUẢ MẠNG NEURON HỖ TRỢ CHẨN ĐOÁN BỆNH DA LIỄU BẰNG PHƯƠNG PHÁP THAY ĐỔI SỐ NEURON TRONG LỚP ẨN Nguyễn Thị Thủy*, Đinh Văn Quang, Đỗ Văn Thanh, Huỳnh Lương Nghĩa Tóm tắt: Hiện nay, việc ứng dụng mạng Neuron nhân tạo hỗ trợ chuẩn đoán bệnh lý đang ngày càng phổ biến nên việc cải thiện các chỉ tiêu chất lượng cho các mạng này như độ chính xác chẩn đoán, tốc độ hội tụ của quá trình huấn luyện mạng vốn phụ thuộc vào việc xác định số Neuron trong lớp ẩn cho mạng chẩn đoán đang được quan tâm đặc biệt. Để góp phần giải quyết vấn đề này, trong bài báo sẽ trình bày việc sử dụng phương pháp thay đổi số Neuron trong lớp ẩn của mạng. Từ khóa: Mạng Neuron nhân tạo; Lớp ẩn. 1. ĐẶT VẤN ĐỀ Trong rất nhiều công trình nghiên cứu ứng dụng mạng Neuron nhân tạo gần đây điển hình như bài báo [1], đã đưa ra kết luận rằng: “Phân loại bằng cách sử dụng các mô hình mạng Neuron nhân tạo cho thấy tỷ lệ phần trăm thành công rất tốt. Mạng Neuron nhân tạo đa lớp truyền thẳng (MLP: multi-layer perceptron networks) được thử nghiệm cho bài toán phân loại bệnh lý dựa trên các thông tin triệu chứng, ảnh chụp y tế và kết quả phân tích xét nghiệm,… là phù hợp để sử dụng trong chẩn đoán y học (hình 1). Hình 1. Chẩn đoán y tế sử dụng mạng Neuron MLP[4]. Thông thường đầu vào của mạng này là các triệu chứng – thuộc tính bệnh lý được ghi nhận bằng các phương thức khác nhau và đầu ra là kết quả chẩn đoán được khẳng định bởi thực tế dùng để luyện (dạy) mạng. Nói chung, các mạng này đã cho kết quả có thể chấp nhận được nhưng khi đầu vào quá lớn có thể dẫn đến giảm độ chính xác và tăng thời gian xử lý (hội tụ chậm hơn). Để giải quyết vấn đề này, nhiều giải pháp đã được đề xuất như chọn lựa cấu trúc tối ưu của mạng Neuron nhân tạo, giảm số lượng kích thước thuộc tính đầu vào, chọn thuật toán luyện mạng thích hợp,… Cũng nhằm mục đích này, ý tưởng phương pháp thay đổi số Neuron trong lớp ẩn của mạng Neuron nhân tạo hỗ trợ chẩn đoán bệnh lý xuất phát từ việc xem xét thành phần của các thuộc tính đầu vào Mạng. Cụ thể các tham số/thuộc tính đầu vào này - vốn được thu nhận bằng các phương pháp đo lường y sinh khác nhau - sẽ tương ứng với 5 cấp cấu trúc của cơ thể như: cơ thể → cơ quan chức năng → mô → tế bào → phân tử sinh học, như được phân loại trong bảng sau: 144 N. T. Thủy, …, H. L. Nghĩa, “Cải thiện hiệu quả mạng Neuron … số Neuron trong lớp ẩn.” Nghiên cứu khoa học công nghệ Bảng 1. Mức cấu trúc của cơ thể và các phương pháp chẩn đoán tương ứng. Số cấp độ Mức cấu trúc Phương pháp chẩn đoán 1 Cấp cơ thể Thu thập triệu chứng ho, đau, sốt… Đo Mạch đập, nhiệt độ, huyết áp,… 2 Cấp cơ quan chức năng Chẩn đoán chức năng (ECG, EEG, EMG,…) 3 Cấp mô CT, MRI, PET SPECT, kính hiển vi nano, phương pháp thử phân tích 4 Cấp độ tế bào: các loại tế bào 5 Cấp độ phân tử sinh học Một cách trực giác chúng ta thấy, thuộc tính đầu vào càng nhiều, càng phức tạp thì số Neuron trong lớp ẩn của mạng phải thay đổi để sao cho việc chẩn đoán đạt được kết quả chính xác nhất. Như vậy, vừa để kiểm tra tính xác đáng và hiệu quả của phương pháp nêu trên vừa để cải thiện chất lượng của mạng chẩn đoán một số bệnh da liễu, trong nghiên cứu này sẽ áp dụng phương pháp gán thay đổi số Neuron trong lớp ẩn đối với mạng Neuron nhân tạo hỗ trợ chẩn đoán bệnh da liễu. 2. XÂY DỰNG MẠNG NEURON NHÂN TẠO HỖ TRỢ CHẨN ĐOÁN BỆNH DA LIỄU VỚI ĐẦU VÀO LÀ CÁC THUỘC TÍNH BỆNH LÝ 2.1. Để thiết kế mạng Neuron trước tiên phải chọn cơ sở dữ liệu phù hợp. Trong trường hợp đang xét ta chọn cơ sở dữ liệu của bệnh da liễu Dermatology Data Set gồm 2 ma trận: ma trận đầu vào mỗi cột tương ứng với các thông số đặc trưng của bản ghi điện tim đồ của một bệnh nhân (DermatologyInputs) và ma trận đầu ra mỗi cột tương ứng với loại bệnh chuẩn đoán của một bệnh nhân (DermatologyTarget) lấy từ kho cơ sở dữ liệu trực tuyến của Đại học Wisconsin [9], được tạo ra vào năm 1998 bởi các tác giả Nilsel Ilter từ Đại học Gazi và Altay Guvenir từ đại học Bilkent ở Thổ Nhĩ Kỳ. Đây là một bộ dữ liệu phản ánh đầy đủ nhất những yếu tố đặc trưng – triệu chứng của bệnh da liễu. Hơn nữa, hiện nay ở Việt Nam chưa có những bộ dữ liệu để phục vụ cho việc chẩn đoán như vậy. Cơ sở dữ liệu này chứa các bản ghi triệu chứng lâm sàng và mô bệnh học thu được từ 366 bệnh nhân với 34 thông số đặc trưng (thuộc tính đầu vào) được liên kết ...
Tìm kiếm theo từ khóa liên quan:
Mạng Neuron nhân tạo Phương pháp thay đổi số neuron Neuron trong lớp ẩn Chẩn đoán bệnh da liễu Thuật toán luyện mạngGợi ý tài liệu liên quan:
-
Machine Learning cơ bản: Phần 1 - Vũ Hữu Tiệp
232 trang 49 0 0 -
Tóm tắt Luận văn Thạc sĩ Kỹ thuật: Phân loại lưu lượng internet dùng Machine Learning
47 trang 22 0 0 -
Phương pháp chẩn đoán và điều trị các bệnh da liễu thường gặp: Phần 1
153 trang 19 0 0 -
Ứng dụng mạng neuron nhân tạo (ANN) trong dự báo độ rỗng
10 trang 19 0 0 -
Đồ án tốt nghiệp: Ứng dụng mạng neuron nhân tạo để nhận dạng ký tự viết tay tiếng Việt
9 trang 16 0 0 -
Ebook Hướng dẫn chẩn đoán và điều trị 65 bệnh Da liễu: Phần 2
176 trang 16 0 0 -
Chăm sóc và điều trị các bệnh da liễu: Phần 1
153 trang 15 0 0 -
Phục hồi dữ liệu sóng biển bằng mạng neuron nhân tạo
9 trang 15 0 0 -
Bệnh da liễu - hướng dẫn chẩn đoán và điều trị: Phần 2
176 trang 14 0 0 -
Nhận dạng chữ số viết tay dùng mạng neuron nhân tạo
12 trang 14 0 0