Chương 2: ƯỚC LƯỢNG CÁC THAM SỐ THỐNG KÊ
Số trang: 19
Loại file: pdf
Dung lượng: 685.72 KB
Lượt xem: 30
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Ví dụ: Điểm trung bình môn toán của 100 thí sinh dự thi vào ĐHKT là 5 với độ
lệch chuẩn mẫu (đã hiệu chỉnh) s = 2,5.
1) Ước lượng điểm trung bình môn toán của toàn thể thí sinh với độ tin cậy là 95%
2) Với độ chính xác 0,25 điểm. Hãy xác định độ (khoảng) tin cậy.
¡ Ví dụ: Tuổi thọ của một loại bóng đèn được biết theo quy luật chuẩn với độ lệch
chuẩn 100 giờ.
1) Chọn ngẫu nhiên 100 bóng để thử nghiệm, thấy mỗi bóng tuổi thọ trung bình là
1000 giờ. Hãy ước lượng tuổi thọ...
Nội dung trích xuất từ tài liệu:
Chương 2: ƯỚC LƯỢNG CÁC THAM SỐ THỐNG KÊ Chương 2 ƯỚC LƯỢNG CÁC THAM SỐ THỐNG KÊ Chương 2: ƯỚC LƯỢNG 2 CÁC NỘI DUNG CHÍNH 2.1 Khái niệm về ước lượng 2.2 Ước lượng trung bình ( 1 mẫu, 2 mẫu ) 2.3 Ước lượng tỷ lệ ( 1 mẫu, 2 mẫu ) 2.4 Ước lượng phương sai ( 1 mẫu, 2 mẫu ) Chương 2: ƯỚC LƯỢNG 3 2.2 Ước lượng trung bình – Tỷ lệ * Trường hợp 1: Trên 1 mẫu Chương 2: ƯỚC LƯỢNG 4 2.2 Ước lượng trung bình * Trường hợp 1: Trên 1 mẫu Chương 2: ƯỚC LƯỢNG 5 2.2 Ước lượng trung bình * Trường hợp 1: Trên 1 mẫu ¡༊ Ví dụ: Điểm trung bình môn toán của 100 thí sinh dự thi vào ĐHKT là 5 với độ lệch chuẩn mẫu (đã hiệu chỉnh) s = 2,5. 1) Ước lượng điểm trung bình môn toán của toàn thể thí sinh với độ tin cậy là 95% 2) Với độ chính xác 0,25 điểm. Hãy xác định độ (khoảng) tin cậy. ¡༊ Ví dụ: Tuổi thọ của một loại bóng đèn được biết theo quy luật chuẩn với độ lệch chuẩn 100 giờ. 1) Chọn ngẫu nhiên 100 bóng để thử nghiệm, thấy mỗi bóng tuổi thọ trung bình là 1000 giờ. Hãy ước lượng tuổi thọ trung bình của bóng đèn xí nghiệp A sản xuất với độ tin cậy 95%. 2) Với độ chính xác là 15 giờ. Hãy xác định độ tin cậy. 3) Với độ chính xác là 25 giờ và độ tin cậy là 95% thì cần thử nghiệm bao nhiêu bóng. ¡༊ Ví dụ: Trọng lượng các bao bột mì tại một cửa hàng lương thực theo quy luật chuẩn. Kiểm tra 20 bao, thấy trọng lượng trung bình của mỗi bao bột mì là 48kg, và phương sai mẫu hiệu chỉnh là s2 = (0,5kg)2. 1) Với độ tin cậy 95% hãy ước lượng trọng lượng trung bình của một bao bột mì thuộc cửa hàng. Chương 2: ƯỚC LƯỢNG 6 2.2 Ước lượng Tỷ lệ * Trường hợp 1: Trên 1 mẫu ¡༊ Ví dụ: Để ước lượng tỷ lệ sản phẩm xấu của một kho đồ hộp, người ta kiểm tra ngẫu nhiên 100 hộp thấy có 11 hộp xấu. 1) Ước lượng tỷ lệ sản phẩm xấu của kho đồ hộp. 2) Ước lượng tỷ lệ sản phẩm xấu của kho đồ hộp với độ tin cậy 94%. 3) Với sai số cho phép = 3%, hãy xác định độ tin cậy. ¡༊ Ví dụ: Lô trái cây của một chủ hàng được đóng thành sọt mỗi sọt 100 trái. Kiểm tra 50 sọt thấy có 450 trái không đạt tiêu chuẩn. 1) Ước lượng tỷ lệ trái cây không đạt tiêu chuẩn của lô hàng với độ tin cậy 95%. 2) Muốn ước lượng tỷ lệ trái cây không đạt tiêu chuẩn với độ chính xác 0,5% thì độ tin cậy đạt được là bao nhiêu? 3) Muốn ước lượng tỷ lệ trái cây không đạt tiêu chuẩn với độ tin cậy 99% và độ chính xác 1% thì cần kiểm tra bao nhiêu sọt? 4) Muốn ước lượng tỷ lệ trái cây không đạt tiêu chuẩn với độ tin cậy 99,7% thì độ chính xác đạt được là bao nhiêu? Chương 2: ƯỚC LƯỢNG 7 2.2 Ước lượng trung bình – Tỷ lệ * Trường hợp 1: Trên 1 mẫu Ví dụ: Điều tra năng suất lúa trên diện tích 100 hecta trồng lúa của một vùng, ta thu được bảng số liệu sau: 1) Hãy ước lượng năng suất lúa trung bình của vùng đó với độ tin cậy 95%? 2) Những thửa ruộng có năng suất từ 48tạ/ha trở lên là những thửa có năng suất cao. Hãy ước lượng tỷ lệ diện tích có năng suất cao trong vùng với độ tin cậy 97%. Chương 2: ƯỚC LƯỢNG 8 2.2 Ước lượng trung bình – Tỷ lệ * Trường hợp 2: Trên 2 mẫu ¡༊ a) Hai mẫu độc lập Hai mẫu độc lập là hai mẫu được chọn ra từ hai tổng thể theo cách sao cho một quan sát khi được chọn vào mẫu này không làm ảnh hưởng đến xác suất một quan sát khác được chọn vào mẫu kia ¡༊ b) Mẫu phối hợp từng cặp (Hai mẫu không độc lập) Mẫu phối hợp từng cặp là mẫu được chọn theo cách một quan sát trên mẫu này có sự tương xứng với một quan sát trên mẫu thứ hai nhằm mục đích kiểm soat những tác nhân ngoại cảnh. Mẫu này còn có tên gọi là mẫu không độc lập hay ngắn gọn là mẫu cặp. Chương 2: ƯỚC LƯỢNG 9 2.2 Ước lượng trung bình – Tỷ lệ * Trường hợp 2: Trên 2 mẫu độc lập – Cỡ mẫu lớn hoặc tổng thể có phân phối chuẩn Chương 2: ƯỚC LƯỢNG 10 2.2 Ước lượng trung bình – Tỷ lệ * Trường hợp 2: Trên 2 mẫu độc lập Chương 2: ƯỚC LƯỢNG 11 2.2 Ước lượng trung bình * Trường hợp 2: Trên 2 mẫu độc lập – Cỡ mẫu lớn Ví dụ. Một công ty nghiên cứu thị trường được thuê thực hiện một cuộc khảo sát của một chuỗi cửa hàng thực phẩm lớn để ước lượng sự khác biệt trong thời gian trung bình mỗi lần ghé cửa hàng của khách hàng nam và khách hàng nữ. Các nghiên cứu trước đó cho biết độ lệch chuẩn là 11 phút đối với khách nam và 16 phút đối với khách nữ. Công ty đã chọn mẫu ngẫu nhiên 100 khách nam và 100 khách nữ vào những thời điểm khác nhau ở các cửa hàng khác nhau trong chuỗi cửa hàng này để khảo sát. Kết quả là thời gian trung bình của khách nam tại cửa hàng là 34,5 phút còn thời gian trung bình của khách nữ là 42,4 phút. Hãy cho biết sự khác biệt giữa ...
Nội dung trích xuất từ tài liệu:
Chương 2: ƯỚC LƯỢNG CÁC THAM SỐ THỐNG KÊ Chương 2 ƯỚC LƯỢNG CÁC THAM SỐ THỐNG KÊ Chương 2: ƯỚC LƯỢNG 2 CÁC NỘI DUNG CHÍNH 2.1 Khái niệm về ước lượng 2.2 Ước lượng trung bình ( 1 mẫu, 2 mẫu ) 2.3 Ước lượng tỷ lệ ( 1 mẫu, 2 mẫu ) 2.4 Ước lượng phương sai ( 1 mẫu, 2 mẫu ) Chương 2: ƯỚC LƯỢNG 3 2.2 Ước lượng trung bình – Tỷ lệ * Trường hợp 1: Trên 1 mẫu Chương 2: ƯỚC LƯỢNG 4 2.2 Ước lượng trung bình * Trường hợp 1: Trên 1 mẫu Chương 2: ƯỚC LƯỢNG 5 2.2 Ước lượng trung bình * Trường hợp 1: Trên 1 mẫu ¡༊ Ví dụ: Điểm trung bình môn toán của 100 thí sinh dự thi vào ĐHKT là 5 với độ lệch chuẩn mẫu (đã hiệu chỉnh) s = 2,5. 1) Ước lượng điểm trung bình môn toán của toàn thể thí sinh với độ tin cậy là 95% 2) Với độ chính xác 0,25 điểm. Hãy xác định độ (khoảng) tin cậy. ¡༊ Ví dụ: Tuổi thọ của một loại bóng đèn được biết theo quy luật chuẩn với độ lệch chuẩn 100 giờ. 1) Chọn ngẫu nhiên 100 bóng để thử nghiệm, thấy mỗi bóng tuổi thọ trung bình là 1000 giờ. Hãy ước lượng tuổi thọ trung bình của bóng đèn xí nghiệp A sản xuất với độ tin cậy 95%. 2) Với độ chính xác là 15 giờ. Hãy xác định độ tin cậy. 3) Với độ chính xác là 25 giờ và độ tin cậy là 95% thì cần thử nghiệm bao nhiêu bóng. ¡༊ Ví dụ: Trọng lượng các bao bột mì tại một cửa hàng lương thực theo quy luật chuẩn. Kiểm tra 20 bao, thấy trọng lượng trung bình của mỗi bao bột mì là 48kg, và phương sai mẫu hiệu chỉnh là s2 = (0,5kg)2. 1) Với độ tin cậy 95% hãy ước lượng trọng lượng trung bình của một bao bột mì thuộc cửa hàng. Chương 2: ƯỚC LƯỢNG 6 2.2 Ước lượng Tỷ lệ * Trường hợp 1: Trên 1 mẫu ¡༊ Ví dụ: Để ước lượng tỷ lệ sản phẩm xấu của một kho đồ hộp, người ta kiểm tra ngẫu nhiên 100 hộp thấy có 11 hộp xấu. 1) Ước lượng tỷ lệ sản phẩm xấu của kho đồ hộp. 2) Ước lượng tỷ lệ sản phẩm xấu của kho đồ hộp với độ tin cậy 94%. 3) Với sai số cho phép = 3%, hãy xác định độ tin cậy. ¡༊ Ví dụ: Lô trái cây của một chủ hàng được đóng thành sọt mỗi sọt 100 trái. Kiểm tra 50 sọt thấy có 450 trái không đạt tiêu chuẩn. 1) Ước lượng tỷ lệ trái cây không đạt tiêu chuẩn của lô hàng với độ tin cậy 95%. 2) Muốn ước lượng tỷ lệ trái cây không đạt tiêu chuẩn với độ chính xác 0,5% thì độ tin cậy đạt được là bao nhiêu? 3) Muốn ước lượng tỷ lệ trái cây không đạt tiêu chuẩn với độ tin cậy 99% và độ chính xác 1% thì cần kiểm tra bao nhiêu sọt? 4) Muốn ước lượng tỷ lệ trái cây không đạt tiêu chuẩn với độ tin cậy 99,7% thì độ chính xác đạt được là bao nhiêu? Chương 2: ƯỚC LƯỢNG 7 2.2 Ước lượng trung bình – Tỷ lệ * Trường hợp 1: Trên 1 mẫu Ví dụ: Điều tra năng suất lúa trên diện tích 100 hecta trồng lúa của một vùng, ta thu được bảng số liệu sau: 1) Hãy ước lượng năng suất lúa trung bình của vùng đó với độ tin cậy 95%? 2) Những thửa ruộng có năng suất từ 48tạ/ha trở lên là những thửa có năng suất cao. Hãy ước lượng tỷ lệ diện tích có năng suất cao trong vùng với độ tin cậy 97%. Chương 2: ƯỚC LƯỢNG 8 2.2 Ước lượng trung bình – Tỷ lệ * Trường hợp 2: Trên 2 mẫu ¡༊ a) Hai mẫu độc lập Hai mẫu độc lập là hai mẫu được chọn ra từ hai tổng thể theo cách sao cho một quan sát khi được chọn vào mẫu này không làm ảnh hưởng đến xác suất một quan sát khác được chọn vào mẫu kia ¡༊ b) Mẫu phối hợp từng cặp (Hai mẫu không độc lập) Mẫu phối hợp từng cặp là mẫu được chọn theo cách một quan sát trên mẫu này có sự tương xứng với một quan sát trên mẫu thứ hai nhằm mục đích kiểm soat những tác nhân ngoại cảnh. Mẫu này còn có tên gọi là mẫu không độc lập hay ngắn gọn là mẫu cặp. Chương 2: ƯỚC LƯỢNG 9 2.2 Ước lượng trung bình – Tỷ lệ * Trường hợp 2: Trên 2 mẫu độc lập – Cỡ mẫu lớn hoặc tổng thể có phân phối chuẩn Chương 2: ƯỚC LƯỢNG 10 2.2 Ước lượng trung bình – Tỷ lệ * Trường hợp 2: Trên 2 mẫu độc lập Chương 2: ƯỚC LƯỢNG 11 2.2 Ước lượng trung bình * Trường hợp 2: Trên 2 mẫu độc lập – Cỡ mẫu lớn Ví dụ. Một công ty nghiên cứu thị trường được thuê thực hiện một cuộc khảo sát của một chuỗi cửa hàng thực phẩm lớn để ước lượng sự khác biệt trong thời gian trung bình mỗi lần ghé cửa hàng của khách hàng nam và khách hàng nữ. Các nghiên cứu trước đó cho biết độ lệch chuẩn là 11 phút đối với khách nam và 16 phút đối với khách nữ. Công ty đã chọn mẫu ngẫu nhiên 100 khách nam và 100 khách nữ vào những thời điểm khác nhau ở các cửa hàng khác nhau trong chuỗi cửa hàng này để khảo sát. Kết quả là thời gian trung bình của khách nam tại cửa hàng là 34,5 phút còn thời gian trung bình của khách nữ là 42,4 phút. Hãy cho biết sự khác biệt giữa ...
Tìm kiếm theo từ khóa liên quan:
: kinh tế lượng lý thuyết xác suất giải thuyết thống kê biến ngẫu nhiên ước lượng tham số luật số lớn thống kê mô tảGợi ý tài liệu liên quan:
-
Bài giảng Xác suất và thống kê trong y dược - Chương 1: Khái niệm cơ bản của lý thuyết xác suất
69 trang 181 0 0 -
Giáo trình Xác suất thống kê (tái bản lần thứ năm): Phần 2
131 trang 165 0 0 -
Đề thi kết thúc học phần Xác suất thống kê năm 2019 - Đề số 5 (09/06/2019)
1 trang 132 0 0 -
Đề cương chi tiết bài giảng Xác suất thống kê
100 trang 97 0 0 -
Một số bài tập trắc nghiệm xác suất - ThS. Đoàn Vương Nguyên
7 trang 90 0 0 -
Giáo trình Lý thuyết xác suất và thống kê toán học - Phần 1
91 trang 87 0 0 -
Bài giảng Toán cao cấp - Chương 1: Các khái niệm cơ bản của lý thuyết xác suất
16 trang 81 0 0 -
Đặc trưng thống kê và hồi quy với dữ liệu khoảng
5 trang 73 0 0 -
Giáo trình Phương pháp thống kê trong khí hậu: Phần 1
98 trang 68 0 0 -
Đề cương bài tập Xác xuất thống kê
29 trang 62 0 0