Chuyên đề Biến đổi Đại số
Thông tin tài liệu:
Nội dung trích xuất từ tài liệu:
Chuyên đề Biến đổi Đại số BIẾN ĐỔI ĐẠI SỐChương 1: Căn thức1.1 CĂN THỨC BẬC 2Kiến thức cần nhớ: • Căn bậc hai của số thực a là số thực x sao cho x 2 = a . • Cho số thực a không âm. Căn bậc hai số học của a kí hiệu là a là một số thực không âm x mà bình phương của nó bằng a : a ≥ 0 x ≥ 0 ⇔ 2 a = x x = a • Với hai số thực không âm a, b ta có: a ≤ b ⇔ a ≤b. • Khi biến đổi các biểu thức liên quan đến căn thức bậc 2 ta cần lưu ý: 2 A A≥0 + A= A = nếu − A A 0 ;(Đây gọi là phép khử căn thức ở mẫu) A A + M = ( M A B ) với A, B ≥ 0, A ≠ B (Đây gọi là phép A± B A− B trục căn thức ở mẫu)1.2 CĂN THỨC BẬC 3, CĂN BẬC n.1.2.1 CĂN THỨC BẬC 3.Kiến thức cần nhớ:THCS.TOANMATH.com 1 • Căn bậc 3 của một số a kí hiệu là 3 a là số x sao cho x3 = a ( ) 3 • Cho a ∈ R; 3 a =x ⇔ x3 = 3 a =a • Mỗi số thực a đều có duy nhất một căn bậc 3. • Nếu a > 0 thì 3 a > 0. • Nếu a < 0 thì 3 a 0 , nếu a < 0 thì 2 k +1 a < 0 , nếu a = 0 thì 2 k +1 a =0 • Trường hợp n là số chẵn: = n 2k , k ∈ N . Mọi số thực a > 0 đều có hai căn bậc chẵn đối nhau. Căn bậc chẵn dương kí hiệu là 2k a (gọi là căn bậc 2k số học của a ). Căn bậc chẵn âm kí hiệu là − 2k a , 2k a = x ⇔ x ≥ 0 và x 2k = a ; − 2 k a = x ⇔ x ≤ 0 và x 2k = a .THCS.TOANMATH.com 2 Mọi số thực a < 0 đều không có căn bậc chẵn.Một số ví dụ:Ví dụ 1: Phân tích các biểu thức sau thành tích: a) P = x4 − 4 P 8 x3 + 3 3 b) = c) P = x 4 + x 2 + 1Lời giải: a) P = ( x 2 − 2 )( x 2 + 2 ) = x − 2( )( x + 2 ) ( x + 2) . 2 ( 3 ) =( 2 x + 3 )( 4 x − 2 3 x + 3) . 3 b) P =( 2 x ) + 3 2 (x + 1) − x 2= (x − x + 1)( x 2 + x + 1) . 2 c) P= 2 2Ví dụ 2: Rút gọn các biểu thức: 1 a) A = x − x− x + khi x ≥ 0 . 4 1 b) B = 4 x − 2 4 x − 1 + 4 x + 2 4 x − 1 khi x ≥ . 4 c) C = 9 − 5 3 + 5 8 + 10 7 − 4 3Lời giải: 2 1 1 1 a) A = x − x− x + = x− x− = x− x− 4 2 2 1 1 1 1 1+ Nếu x≥ ⇔ x ≥ thì x− = x− ⇒ A= . 2 4 2 2 2 1 1 1 1 1+ Nếu x< ⇔ 0 ≤ x < thì x− =− x+ ⇒ A=2 x− 2 4 2 2 2THCS.TOANMATH.com 3 b)B= 4 x − 2 4 x − 1 + 4 x + 2 4 x −= 1 4x −1− 2 4x −1 +1 + 4x −1+ 2 4x −1 +1 ( ) ( ) 2 2 BHay = 4x −1 −1 + 4 x − 1 + 1= 4x −1 −1 + 4x −1 +1= 4x −1 −1 + 4x −1 +1 1+ Nếu 4x −1 −1 ≥ 0 ⇔ 4x −1 ≥ 1 ⇔ x ≥ thì 4 x − 1 −= ...
Tìm kiếm theo từ khóa liên quan:
Chuyên đề Biến đổi đại số Biến đổi đại số Căn thức bậc hai Căn thức bậc 3 Bài tập biến đổi đại số Rút gọn biểu thứcGợi ý tài liệu liên quan:
-
Bộ đề thi học sinh giỏi cấp tỉnh môn Toán lớp 9
263 trang 161 0 0 -
Bộ đề thi vào lớp 10 môn Toán các tỉnh năm học 2023-2024
288 trang 102 0 0 -
Đề cương ôn tập học kì 2 môn Toán lớp 9 năm 2022-2023 - Trường THCS Dương Nội
5 trang 76 0 0 -
Đề thi giữa học kì 1 môn Toán lớp 8 năm 2023-2024 có đáp án - Trường THCS Lê Đình Chinh, Tiên Phước
5 trang 75 2 0 -
Đề thi giữa học kì 1 môn Toán lớp 9 năm 2023-2024 có đáp án - Trường THCS Quang Trung, Tiên Phước
10 trang 62 0 0 -
Đề thi giữa học kì 1 môn Toán lớp 9 năm 2023-2024 có đáp án - Trường THCS Mạc Đỉnh Chi, Long Điền
6 trang 49 0 0 -
Đề thi giữa học kì 1 môn Toán lớp 9 năm 2023-2024 có đáp án - Trường THCS Trần Hưng Đạo, Châu Đức
8 trang 44 0 0 -
Đề thi học kì 1 môn Toán lớp 8 năm 2023-2024 có đáp án - Trường THCS Nghĩa Tân, Cầu Giấy
5 trang 37 0 0 -
Đề thi học kì 1 môn Toán lớp 8 năm 2023-2024 - Trường THCS Lê Qúy Đôn, Cầu Giấy
2 trang 35 0 0 -
Đề thi giữa học kì 1 môn Toán lớp 9 năm 2023-2024 có đáp án - Trường THCS Lê Cơ, Tiên Phước
18 trang 34 0 0