Chuyên đề hàm số lượng giác và phương trình lượng giác - Phạm Hùng Hải
Số trang: 66
Loại file: pdf
Dung lượng: 1.07 MB
Lượt xem: 9
Lượt tải: 0
Xem trước 7 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Tài liệu "Chuyên đề hàm số lượng giác và phương trình lượng giác - Phạm Hùng Hải" được biên soạn bởi thầy giáo Phạm Hùng Hải, tổng hợp kiến thức cần nhớ, phân loại, phương pháp giải toán và bài tập trắc nghiệm + tự luận chuyên đề hàm số lượng giác và phương trình lượng giác. Mời thầy cô và các em cùng tham khảo.
Nội dung trích xuất từ tài liệu:
Chuyên đề hàm số lượng giác và phương trình lượng giác - Phạm Hùng Hải Fly Education Thầy Hải Toán K/82/10/22 Nguyễn Văn Linh – Hải Châu – Đà Nẵng SĐT: 0905958921PHƯƠNG TRÌNH LƯỢNG GIÁC TÀI LIỆU LƯU HÀNH NỘI BỘ 2021 MỤC LỤCChương 1. HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC 1§0 – Công thức lượng giác cần nhớ 1§1 – HÀM SỐ LƯỢNG GIÁC 3 Nơi Đâu Có Ý Chí Ở Đó Có Con Đường A KIẾN THỨC CẦN NHỚ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 | Dạng 1. Tìm tập xác định của hàm số lượng giác . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 | Dạng 2. Tính chẵn lẻ của hàm số . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 | Dạng 3. Tìm giá trị lớn nhất - giá trị nhỏ nhất . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 C BÀI TẬP TRẮC NGHIỆM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13§2 – PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN 17 A KIẾN THỨC CẦN NHỚ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 | Dạng 1. Giải các phương trình lượng giác cơ bản . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 | Dạng 2. Giải các phương trình lượng giác dạng mở rộng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 | Dạng 3. Giải các phương trình lượng giác có điều kiện xác định . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 | Dạng 4. Giải các phương trình lượng giác trên khoảng (a; b) cho trước . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 C BÀI TẬP TRẮC NGHIỆM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26§3 – MỘT SỐ PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP 29 A KIẾN THỨC CẦN NHỚ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 | Dạng 1. Giải phương trình bậc nhất đối với một hàm số lượng giác . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 | Dạng 2. Giải phương trình bậc hai đối với một hàm số lượng giác . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 | Dạn ...
Nội dung trích xuất từ tài liệu:
Chuyên đề hàm số lượng giác và phương trình lượng giác - Phạm Hùng Hải Fly Education Thầy Hải Toán K/82/10/22 Nguyễn Văn Linh – Hải Châu – Đà Nẵng SĐT: 0905958921PHƯƠNG TRÌNH LƯỢNG GIÁC TÀI LIỆU LƯU HÀNH NỘI BỘ 2021 MỤC LỤCChương 1. HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC 1§0 – Công thức lượng giác cần nhớ 1§1 – HÀM SỐ LƯỢNG GIÁC 3 Nơi Đâu Có Ý Chí Ở Đó Có Con Đường A KIẾN THỨC CẦN NHỚ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 | Dạng 1. Tìm tập xác định của hàm số lượng giác . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 | Dạng 2. Tính chẵn lẻ của hàm số . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 | Dạng 3. Tìm giá trị lớn nhất - giá trị nhỏ nhất . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 C BÀI TẬP TRẮC NGHIỆM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13§2 – PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN 17 A KIẾN THỨC CẦN NHỚ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 | Dạng 1. Giải các phương trình lượng giác cơ bản . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 | Dạng 2. Giải các phương trình lượng giác dạng mở rộng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 | Dạng 3. Giải các phương trình lượng giác có điều kiện xác định . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 | Dạng 4. Giải các phương trình lượng giác trên khoảng (a; b) cho trước . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 C BÀI TẬP TRẮC NGHIỆM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26§3 – MỘT SỐ PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP 29 A KIẾN THỨC CẦN NHỚ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 | Dạng 1. Giải phương trình bậc nhất đối với một hàm số lượng giác . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 | Dạng 2. Giải phương trình bậc hai đối với một hàm số lượng giác . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 | Dạn ...
Tìm kiếm theo từ khóa liên quan:
Tài liệu Đại số 11 Ôn tập Đại số lớp 11 Hàm số lượng giác Phương trình lượng giác Phương pháp giải phương trình lượng giác Bài tập lượng giácGợi ý tài liệu liên quan:
-
Khai phóng năng lực Toán lớp 11 - Nguyễn Hoàng Thanh
104 trang 134 0 0 -
Tổng hợp trắc nghiệm Toán 11 toàn tập đầy đủ các chủ đề hay
536 trang 57 0 0 -
Giáo án môn Toán lớp 11 (Sách Chân trời sáng tạo)
506 trang 45 0 0 -
24 trang 45 0 0
-
Bài giảng Đại số lớp 11 bài 1: Hàm số lượng giác
22 trang 41 0 0 -
Nội dung ôn tập học kì 1 môn Toán lớp 11 năm 2023-2024 - Trường THPT Trần Phú - Hoàn Kiếm
17 trang 38 0 0 -
Tài liệu Phương trình lượng giác
54 trang 38 0 0 -
Toán trắc nghiệm toàn tập Toán 11
87 trang 38 0 0 -
Đề cương ôn tập giữa học kì 1 môn Toán lớp 11 năm 2023-2024 - Trường THPT Việt Đức, Hà Nội
12 trang 37 0 0 -
Giáo án Đại số lớp 11 (Học kỳ 2)
52 trang 37 0 0