Danh mục

Chuyên đề hàm số lượng giác và phương trình lượng giác - Phạm Hùng Hải

Số trang: 66      Loại file: pdf      Dung lượng: 1.07 MB      Lượt xem: 9      Lượt tải: 0    
Hoai.2512

Phí tải xuống: 39,000 VND Tải xuống file đầy đủ (66 trang) 0
Xem trước 7 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tài liệu "Chuyên đề hàm số lượng giác và phương trình lượng giác - Phạm Hùng Hải" được biên soạn bởi thầy giáo Phạm Hùng Hải, tổng hợp kiến thức cần nhớ, phân loại, phương pháp giải toán và bài tập trắc nghiệm + tự luận chuyên đề hàm số lượng giác và phương trình lượng giác. Mời thầy cô và các em cùng tham khảo.
Nội dung trích xuất từ tài liệu:
Chuyên đề hàm số lượng giác và phương trình lượng giác - Phạm Hùng Hải Fly Education Thầy Hải Toán K/82/10/22 Nguyễn Văn Linh – Hải Châu – Đà Nẵng SĐT: 0905958921PHƯƠNG TRÌNH LƯỢNG GIÁC TÀI LIỆU LƯU HÀNH NỘI BỘ 2021 MỤC LỤCChương 1. HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC 1§0 – Công thức lượng giác cần nhớ 1§1 – HÀM SỐ LƯỢNG GIÁC 3 Nơi Đâu Có Ý Chí Ở Đó Có Con Đường A KIẾN THỨC CẦN NHỚ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 | Dạng 1. Tìm tập xác định của hàm số lượng giác . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 | Dạng 2. Tính chẵn lẻ của hàm số . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 | Dạng 3. Tìm giá trị lớn nhất - giá trị nhỏ nhất . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 C BÀI TẬP TRẮC NGHIỆM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13§2 – PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN 17 A KIẾN THỨC CẦN NHỚ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 | Dạng 1. Giải các phương trình lượng giác cơ bản . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 | Dạng 2. Giải các phương trình lượng giác dạng mở rộng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 | Dạng 3. Giải các phương trình lượng giác có điều kiện xác định . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 | Dạng 4. Giải các phương trình lượng giác trên khoảng (a; b) cho trước . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 C BÀI TẬP TRẮC NGHIỆM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26§3 – MỘT SỐ PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP 29 A KIẾN THỨC CẦN NHỚ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 | Dạng 1. Giải phương trình bậc nhất đối với một hàm số lượng giác . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 | Dạng 2. Giải phương trình bậc hai đối với một hàm số lượng giác . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 | Dạn ...

Tài liệu được xem nhiều: