Creep analysis of bimaterial microcantilever beam for sensing device using artificial neural network (ANN)
Số trang: 8
Loại file: pdf
Dung lượng: 211.70 KB
Lượt xem: 7
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
In this study, a feed-forward back-propagation Artificial Neural Network (ANN) is used to predict the stress relaxation and behavior of creep for bimaterial microcantilever beam for sensing device. Results obtained from ANSYS® 8.1 finite element (FE) simulations, which show good agreement with experimental work [1], is used to train the neural network. Parametric studies are carried out to analyze the effects of creep on the microcantilever beam in term of curvature and stress developed with time. It is shown that ANN accurately predicts the stress level for the microcantilever beam using the trained ANSYS® simulation results due to the fact that there is no scattered data in the FE simulation results. ANN takes a small fraction of time and effort compared to FE prediction.
Nội dung trích xuất từ tài liệu:
Creep analysis of bimaterial microcantilever beam for sensing device using artificial neural network (ANN)
Nội dung trích xuất từ tài liệu:
Creep analysis of bimaterial microcantilever beam for sensing device using artificial neural network (ANN)
Tìm kiếm theo từ khóa liên quan:
Bimaterial microcantilever beam Creep analysis Sensing device Artificial neural network Parametric studies are carriedTài liệu liên quan:
-
Short-term load forecasting using long short-term memory network
4 trang 50 0 0 -
Applications of artificial neural network in textiles
10 trang 33 0 0 -
Bài giảng Nhập môn Học máy và Khai phá dữ liệu: Chương 8 - Nguyễn Nhật Quang
69 trang 32 0 0 -
Artificial intelligence approach to predict the dynamic modulus of asphalt concrete mixtures
10 trang 31 0 0 -
8 trang 28 0 0
-
Ebook Sustainable construction and building materials: Select proceedings of ICSCBM 2018 - Part 2
446 trang 26 0 0 -
Sử dụng mạng nơron thần kinh nhân tạo để tính toán, dự đoán diện tích gương hầm sau khi nổ mìn
8 trang 25 0 0 -
Lecture Introduction to Machine learning and Data mining: Lesson 8
68 trang 24 0 0 -
Short-term load forecasting of buildings based on artificial neural network and clustering technique
13 trang 22 0 0 -
Mạng thần kinh thường xuyên cho dự đoán P2
21 trang 19 0 0