đại số tuyến tính - chương 1 số phức
Số trang: 38
Loại file: ppt
Dung lượng: 1.11 MB
Lượt xem: 16
Lượt tải: 0
Xem trước 4 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Mỗi số phức được biểu diễn bởi một điểm trên mặt phẳng phức.Khoảng cách từ gốc toạ độ O tới z được gọi là môđun của số phức z.
Nội dung trích xuất từ tài liệu:
đại số tuyến tính - chương 1 số phức Đại học Quốc gia TP.HCM TRƯỜNG ĐẠI HỌC BÁCH KHOA Khoa: Khoa Học Ứng Dụng Bộ môn: Toán Ứng Dụng TOÁN 2 Chương 1: SỐ PHỨCToán 2 Slide 1 CHƯƠNG 1: SỐ PHỨC Chương 1: SỐ PHỨCToán 2 Slide 2 1. DẠNG ĐẠI SỐ CỦA SỐ PHỨC:1. Dạng đại số của số phức: a/ Định nghĩa: • Dạng đại số của số phức là: = a + i b z Ở đây : a : được gọi là phần thực của số phức z , ký hiệu là Re( z ) b : được gọi là phần ảo của số phức z , Im( z ) ký hiệu là i : được gọi là đơn vị ảo với i 2 = −1 Chương 1: SỐ PHỨCToán 2 Slide 3 1. DẠNG ĐẠI SỐ CỦA SỐ PHỨC: • Tập hợp số phức ta ký hiệu là C hay còn gọi là mặt phẳng phức. y Ở đây : z b Trục Ox : được gọi là trục thực x O a Trục Oy : được gọi là trục ảo Mỗi số phức được biểu diễn bởi một điểm trên mặt phẳng phức. Khoảng cách từ gốc toạ độ O tới z được gọi là mod ( z ) môđun của số phức z và ký hiệu làz hoặc Chương 1: SỐ PHỨCToán 2 Slide 4 1. DẠNG ĐẠI SỐ CỦA SỐ PHỨC: z = a − i b được gọi là số phức liên hợp của z • b/ Các phép toán: z1 = a1 + i b1 Cho hai số phức z2 = a2 + i b2 a1 = a2 ∗ z1 = z2 ⇔ b1 = b2 z1 + z2 = ( a1 + a2 ) + i ( b1 + b2 ) ∗ ∗ z1 z2 = ( a1 + i b1 ) ( a2 + i b2 ) x x = ( a1 a2 − b1 b2 ) + i ( a1 b2 + a2 b1 ) Chương 1: SỐ PHỨCToán 2 Slide 5 1. DẠNG ĐẠI SỐ CỦA SỐ PHỨC: 1. Ở đây : Ta nhân tương tự như trong trường hợp phức với chú ý i 2 = −1 số Dễ nhận thấy z = a + i b thì z. z = a 2 + b 2 a −ib 1 1 và = = ( a + i b) ( a − i b) a+ib z a − b =2 + i 2 2 a +b a +b 2 Chương 1: SỐ PHỨCToán 2 Slide 6 1. DẠNG ĐẠI SỐ CỦA SỐ PHỨC: ( a1 + i b1 ) ( a2 − i b2 ) a1 + i b1 z1 ∗ = = ( a1 + i b1 ) ( a2 − i b2 ) a2 + i b2 z2 a1 a2 + b1 b2 a2 b1 + a1 b2 = +i a2 + b2 a2 + b2 2 2 2 2 ( ĐK: z2 ≠ 0 ) Chương 1: SỐ PHỨCToán 2 Slide 7 1. DẠNG ĐẠI SỐ CỦA SỐ PHỨC: Từ định nghĩa của các phép toán, ta dễ dàng chứng minh các công thức sau: ∗ z + z = ( a + i b ) + ( a − i b ) = 2 a = 2 Re ( z ) ∗ z − z = ( a + i b ) − ( a − i b ) = 2 i b = 2 i Im( z ) ∗ z1+ z2 = z1 + z2 ∗ z1− z2 = z1 − z2 ∗ z1. z2 = z1. z2 z1 z1 ∗ = z2 z2 Chương 1: SỐ PHỨCToán 2 Slide 8 1. DẠNG ĐẠI SỐ CỦA SỐ PHỨC: VD1: Biểu diễn số phức sau dưới dạng đại số 1+ 3i z= 1+ i Nhân tử và mẫu cho số phức liên hợp 1 − i ta được (1 + 3 i ) (1 − i ) 4 + 2 i z= = = 1+ i (1 + i ) (1 − i ) 2 Chương 1: SỐ PHỨCToán 2 Slide 9 1. DẠNG ĐẠI SỐ CỦA SỐ PHỨC: VD2: Cho f ( z ) = z 3 − ( 2 + i ) z 2 + ( 2 + i ) z − 2i a/ Tính f ( i ) b/ Giải phương trình f ( z ) = 0 Giải: a/ Dễ dàng tính được f ( i ) = 0 b/ z = i là 1 nghiệm của phương trình nên ta phân tích được f ( z ) = ( z − i ) ( z 2 − 2 z + 2) = 0 Chương 1: SỐ PHỨCToán 2 Slide 10 1. DẠNG ĐẠI SỐ CỦA SỐ PHỨC: Nhận xét : Phương trình z 2 − 2 z + 2 = 0 có 2 nghiệm là 1 ± i ở đây ∆ = − 1 = i 2 Kết luận : Phương trình f ( z ) = 0 có 3 nghiệm là z = i , z = 1± i Chương 1: SỐ PHỨCToán 2 Slide 11 2. DẠNG LƯỢNG GIÁC CỦA SỐ PHỨC:2. Dạng lượng giác của số phức: y a/ Định nghĩa: z bCho số phức z = a + i b , z ≠ 0 rGọi r là khoảng cách từ ϕ x gốc toạ độ O tới z O avà ϕ là góc hợp giữa hướng dương của trục thực với bán kính vectơ của điểm .z Khi đó ta có : z = a + i b = r ( cos ϕ + i sin ϕ ) Chương 1: SỐ PHỨCToán 2 Slide 12 2. DẠNG LƯỢNG GIÁC CỦA SỐ PHỨC: Biểu thức z = r ( cos ϕ + i sin ϕ ) được gọi là • dạng lượng giác của số phứcz Ở đây : r = z = a 2 + b 2 ...
Nội dung trích xuất từ tài liệu:
đại số tuyến tính - chương 1 số phức Đại học Quốc gia TP.HCM TRƯỜNG ĐẠI HỌC BÁCH KHOA Khoa: Khoa Học Ứng Dụng Bộ môn: Toán Ứng Dụng TOÁN 2 Chương 1: SỐ PHỨCToán 2 Slide 1 CHƯƠNG 1: SỐ PHỨC Chương 1: SỐ PHỨCToán 2 Slide 2 1. DẠNG ĐẠI SỐ CỦA SỐ PHỨC:1. Dạng đại số của số phức: a/ Định nghĩa: • Dạng đại số của số phức là: = a + i b z Ở đây : a : được gọi là phần thực của số phức z , ký hiệu là Re( z ) b : được gọi là phần ảo của số phức z , Im( z ) ký hiệu là i : được gọi là đơn vị ảo với i 2 = −1 Chương 1: SỐ PHỨCToán 2 Slide 3 1. DẠNG ĐẠI SỐ CỦA SỐ PHỨC: • Tập hợp số phức ta ký hiệu là C hay còn gọi là mặt phẳng phức. y Ở đây : z b Trục Ox : được gọi là trục thực x O a Trục Oy : được gọi là trục ảo Mỗi số phức được biểu diễn bởi một điểm trên mặt phẳng phức. Khoảng cách từ gốc toạ độ O tới z được gọi là mod ( z ) môđun của số phức z và ký hiệu làz hoặc Chương 1: SỐ PHỨCToán 2 Slide 4 1. DẠNG ĐẠI SỐ CỦA SỐ PHỨC: z = a − i b được gọi là số phức liên hợp của z • b/ Các phép toán: z1 = a1 + i b1 Cho hai số phức z2 = a2 + i b2 a1 = a2 ∗ z1 = z2 ⇔ b1 = b2 z1 + z2 = ( a1 + a2 ) + i ( b1 + b2 ) ∗ ∗ z1 z2 = ( a1 + i b1 ) ( a2 + i b2 ) x x = ( a1 a2 − b1 b2 ) + i ( a1 b2 + a2 b1 ) Chương 1: SỐ PHỨCToán 2 Slide 5 1. DẠNG ĐẠI SỐ CỦA SỐ PHỨC: 1. Ở đây : Ta nhân tương tự như trong trường hợp phức với chú ý i 2 = −1 số Dễ nhận thấy z = a + i b thì z. z = a 2 + b 2 a −ib 1 1 và = = ( a + i b) ( a − i b) a+ib z a − b =2 + i 2 2 a +b a +b 2 Chương 1: SỐ PHỨCToán 2 Slide 6 1. DẠNG ĐẠI SỐ CỦA SỐ PHỨC: ( a1 + i b1 ) ( a2 − i b2 ) a1 + i b1 z1 ∗ = = ( a1 + i b1 ) ( a2 − i b2 ) a2 + i b2 z2 a1 a2 + b1 b2 a2 b1 + a1 b2 = +i a2 + b2 a2 + b2 2 2 2 2 ( ĐK: z2 ≠ 0 ) Chương 1: SỐ PHỨCToán 2 Slide 7 1. DẠNG ĐẠI SỐ CỦA SỐ PHỨC: Từ định nghĩa của các phép toán, ta dễ dàng chứng minh các công thức sau: ∗ z + z = ( a + i b ) + ( a − i b ) = 2 a = 2 Re ( z ) ∗ z − z = ( a + i b ) − ( a − i b ) = 2 i b = 2 i Im( z ) ∗ z1+ z2 = z1 + z2 ∗ z1− z2 = z1 − z2 ∗ z1. z2 = z1. z2 z1 z1 ∗ = z2 z2 Chương 1: SỐ PHỨCToán 2 Slide 8 1. DẠNG ĐẠI SỐ CỦA SỐ PHỨC: VD1: Biểu diễn số phức sau dưới dạng đại số 1+ 3i z= 1+ i Nhân tử và mẫu cho số phức liên hợp 1 − i ta được (1 + 3 i ) (1 − i ) 4 + 2 i z= = = 1+ i (1 + i ) (1 − i ) 2 Chương 1: SỐ PHỨCToán 2 Slide 9 1. DẠNG ĐẠI SỐ CỦA SỐ PHỨC: VD2: Cho f ( z ) = z 3 − ( 2 + i ) z 2 + ( 2 + i ) z − 2i a/ Tính f ( i ) b/ Giải phương trình f ( z ) = 0 Giải: a/ Dễ dàng tính được f ( i ) = 0 b/ z = i là 1 nghiệm của phương trình nên ta phân tích được f ( z ) = ( z − i ) ( z 2 − 2 z + 2) = 0 Chương 1: SỐ PHỨCToán 2 Slide 10 1. DẠNG ĐẠI SỐ CỦA SỐ PHỨC: Nhận xét : Phương trình z 2 − 2 z + 2 = 0 có 2 nghiệm là 1 ± i ở đây ∆ = − 1 = i 2 Kết luận : Phương trình f ( z ) = 0 có 3 nghiệm là z = i , z = 1± i Chương 1: SỐ PHỨCToán 2 Slide 11 2. DẠNG LƯỢNG GIÁC CỦA SỐ PHỨC:2. Dạng lượng giác của số phức: y a/ Định nghĩa: z bCho số phức z = a + i b , z ≠ 0 rGọi r là khoảng cách từ ϕ x gốc toạ độ O tới z O avà ϕ là góc hợp giữa hướng dương của trục thực với bán kính vectơ của điểm .z Khi đó ta có : z = a + i b = r ( cos ϕ + i sin ϕ ) Chương 1: SỐ PHỨCToán 2 Slide 12 2. DẠNG LƯỢNG GIÁC CỦA SỐ PHỨC: Biểu thức z = r ( cos ϕ + i sin ϕ ) được gọi là • dạng lượng giác của số phứcz Ở đây : r = z = a 2 + b 2 ...
Tìm kiếm theo từ khóa liên quan:
toán cao cấp đại số tuyến tính Không gian tuyến tính ánh xạ tuyến tính tìm hiểu đại số tuyến tính nghiên cứu đại số tuyến tính tài liệu đại số tuyến tínhGợi ý tài liệu liên quan:
-
Cách tính nhanh giá trị riêng của ma trận vuông cấp 2 và cấp 3
4 trang 273 0 0 -
1 trang 240 0 0
-
Hướng dẫn giải bài tập Đại số tuyến tính: Phần 1
106 trang 229 0 0 -
Giáo trình Phương pháp tính: Phần 2
204 trang 204 0 0 -
Hình thành hệ thống điều khiển trình tự xử lý các toán tử trong một biểu thức logic
50 trang 170 0 0 -
Giáo trình Toán kinh tế: Phần 1 (dành cho hệ Cao đẳng chuyên ngành Kế toán)
146 trang 135 0 0 -
4 trang 101 0 0
-
Đại số tuyến tính - Bài tập chương II
5 trang 92 0 0 -
Giáo trình Toán học cao cấp (tập 2) - NXB Giáo dục
213 trang 92 0 0 -
Bài giảng Toán cao cấp - Chương 1: Các khái niệm cơ bản của lý thuyết xác suất
16 trang 79 0 0