Đề khảo sát chọn đội tuyển HSG môn Toán 12 năm 2019-2020 - Trường THPT Lê Quý Đôn
Số trang: 7
Loại file: pdf
Dung lượng: 191.06 KB
Lượt xem: 10
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Cùng tham khảo “Đề khảo sát chọn đội tuyển HSG môn Toán 12 năm 2019-2020 - Trường THPT Lê Quý Đôn” để các em ôn tập lại các kiến thức đã học, đánh giá năng lực làm bài của mình cũng như làm quen với cấu trúc đề thi để chuẩn bị kì thi được tốt hơn với số điểm cao như mong muốn. Chúc các em thi tốt!
Nội dung trích xuất từ tài liệu:
Đề khảo sát chọn đội tuyển HSG môn Toán 12 năm 2019-2020 - Trường THPT Lê Quý Đôn SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ NỘI ĐỀ KHẢO SÁT CHỌN ĐỘI TUYỂN HSG 12TRƯỜNG THPT LÊ QUÝ ĐÔN - ĐỐNG ĐA MÔN: TOÁN (Đề gồm 01 trang) NĂM HỌC: 2019 - 2020 Thời gian làm bài 180 phútCâu 1 (4 điểm). Tìm m để đồ thị hàm số y x3 3 x 2 mx 2 m cắt trục hoành tại 3 điểm phân biệt A, B, C sao cho tổng hệ số góc của các tiếp tuyến với đồ thị hàm số tại các điểm A, B, C bằng 3.Câu 2 (6 điểm). a. Giải phương trình: 2 sin 2 x cos 2 x 2 2 sin 2 x.cos x sin x 2 cos x . x3 y 2 x 2 2 xy 1 b. Giải hệ phương trình: . 2 x 3 x y 2 0Câu 3 (4 điểm). 2020 u1 Cho dãy số un xác định bởi 2019 , n * . 2u u 2 2u n 1 n n 1 1 1 Đặt S n ... . Tính lim Sn . u1 2 u2 2 un 2Câu 4 (4 điểm). Cho hình chóp tam giác đều S . ABC có cạnh đáy bằng 1. Gọi M , N là hai điểm thay đổi lần lượt thuộc các cạnh AB , AC sao cho mặt phẳng SMN luôn vuông góc với mặt phẳng ABC . Đặt AM x, AN y. a. Chứng minh rằng x y 3 xy. b. Tìm x , y để SMN có diện tích bé nhất, lớn nhất.Câu 5 (2 điểm). Cho a, b, c là các số thực dương thoả mãn a b c 3 . Tìm giá trị lớn nhất của biểu thức. 2 abc abc P 3 . 3 ab bc ca 6 1 a 1 b 1 c ----------------------- HẾT ----------------------- Thí sinh không sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. ĐÁP ÁN ĐỀ KHẢO SÁT CHỌN ĐỘI TUYỂN HỌC SINH GIỎI 12CÂU Ý NỘI DUNG ĐIỂM Tìm m để đồ thị hàm số y x3 3 x 2 mx 2 m cắt trục hoành tại 3 điểm phân biệt A, B, C sao cho tổng hệ số góc của các tiếp tuyến với đồ thị hàm số tại các điểm 4 A, B, C bằng 3. Đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt khi và chỉ khi phương trình x3 3 x 2 mx 2 m 0 (1) có 3 nghiệm phân biệt. 1,0 x3 3 x 2 mx 2 m 0 ( x 1)( x 2 2 x m 2) 0 Phương trình (1) có 3 nghiệm phân biệt x 2 2 x m 2 0 (2) có hai nghiệm phân 3 m 0 1,0 biệt khác 1 m 3 (*) . 1 1 2 m 2 0 Gọi x1 , x2 là nghiệm của phương trình (2), suy ra tổng hệ số góc tiếp tuyến của đồ thị hàm số tại giao điểm A, B, C là: 1,5 y (1) y ( x1 ) y ( x2 ) 3( x1 x2 ) 2 6 x1 x2 6( x1 x2 ) 3m 3 9 3m Tổng HSG của các tiếp tuyến bằng 3 9 3m 3 m 2 (t/m đk (*)). 0.5 ĐS: m 2 Giải phương trình: 2 sin 2 x cos 2 x 2 2 sin 2 x.cos x sin x 2 cos x a 1,0 cos2x = 2 sin 2x.cosx - sin2x 2 sin x - sin2x 2 2cosx - 2 2cos x 1 sin 2x 2cosx -1 2 s inx 2cosx -1 2 2 2cosx -1 1,0 2 2cosx +1 2cosx -1 2cosx -1 sin 2x - 2 s inx +2 1 0.5 cosx = 2 1 2 s inx + cosx 2sinx.cosx - 1 = 0 2 + (1) x k 2 4 ...
Nội dung trích xuất từ tài liệu:
Đề khảo sát chọn đội tuyển HSG môn Toán 12 năm 2019-2020 - Trường THPT Lê Quý Đôn SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ NỘI ĐỀ KHẢO SÁT CHỌN ĐỘI TUYỂN HSG 12TRƯỜNG THPT LÊ QUÝ ĐÔN - ĐỐNG ĐA MÔN: TOÁN (Đề gồm 01 trang) NĂM HỌC: 2019 - 2020 Thời gian làm bài 180 phútCâu 1 (4 điểm). Tìm m để đồ thị hàm số y x3 3 x 2 mx 2 m cắt trục hoành tại 3 điểm phân biệt A, B, C sao cho tổng hệ số góc của các tiếp tuyến với đồ thị hàm số tại các điểm A, B, C bằng 3.Câu 2 (6 điểm). a. Giải phương trình: 2 sin 2 x cos 2 x 2 2 sin 2 x.cos x sin x 2 cos x . x3 y 2 x 2 2 xy 1 b. Giải hệ phương trình: . 2 x 3 x y 2 0Câu 3 (4 điểm). 2020 u1 Cho dãy số un xác định bởi 2019 , n * . 2u u 2 2u n 1 n n 1 1 1 Đặt S n ... . Tính lim Sn . u1 2 u2 2 un 2Câu 4 (4 điểm). Cho hình chóp tam giác đều S . ABC có cạnh đáy bằng 1. Gọi M , N là hai điểm thay đổi lần lượt thuộc các cạnh AB , AC sao cho mặt phẳng SMN luôn vuông góc với mặt phẳng ABC . Đặt AM x, AN y. a. Chứng minh rằng x y 3 xy. b. Tìm x , y để SMN có diện tích bé nhất, lớn nhất.Câu 5 (2 điểm). Cho a, b, c là các số thực dương thoả mãn a b c 3 . Tìm giá trị lớn nhất của biểu thức. 2 abc abc P 3 . 3 ab bc ca 6 1 a 1 b 1 c ----------------------- HẾT ----------------------- Thí sinh không sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. ĐÁP ÁN ĐỀ KHẢO SÁT CHỌN ĐỘI TUYỂN HỌC SINH GIỎI 12CÂU Ý NỘI DUNG ĐIỂM Tìm m để đồ thị hàm số y x3 3 x 2 mx 2 m cắt trục hoành tại 3 điểm phân biệt A, B, C sao cho tổng hệ số góc của các tiếp tuyến với đồ thị hàm số tại các điểm 4 A, B, C bằng 3. Đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt khi và chỉ khi phương trình x3 3 x 2 mx 2 m 0 (1) có 3 nghiệm phân biệt. 1,0 x3 3 x 2 mx 2 m 0 ( x 1)( x 2 2 x m 2) 0 Phương trình (1) có 3 nghiệm phân biệt x 2 2 x m 2 0 (2) có hai nghiệm phân 3 m 0 1,0 biệt khác 1 m 3 (*) . 1 1 2 m 2 0 Gọi x1 , x2 là nghiệm của phương trình (2), suy ra tổng hệ số góc tiếp tuyến của đồ thị hàm số tại giao điểm A, B, C là: 1,5 y (1) y ( x1 ) y ( x2 ) 3( x1 x2 ) 2 6 x1 x2 6( x1 x2 ) 3m 3 9 3m Tổng HSG của các tiếp tuyến bằng 3 9 3m 3 m 2 (t/m đk (*)). 0.5 ĐS: m 2 Giải phương trình: 2 sin 2 x cos 2 x 2 2 sin 2 x.cos x sin x 2 cos x a 1,0 cos2x = 2 sin 2x.cosx - sin2x 2 sin x - sin2x 2 2cosx - 2 2cos x 1 sin 2x 2cosx -1 2 s inx 2cosx -1 2 2 2cosx -1 1,0 2 2cosx +1 2cosx -1 2cosx -1 sin 2x - 2 s inx +2 1 0.5 cosx = 2 1 2 s inx + cosx 2sinx.cosx - 1 = 0 2 + (1) x k 2 4 ...
Tìm kiếm theo từ khóa liên quan:
Đề KSCL HSG Toán 12 Đề thi khảo sát HSG môn Toán lớp 12 Đề thi HSG môn Toán lớp 12 Đề thi học sinh giỏi môn Toán Đề thi học sinh giỏi Toán Đề thi học sinh giỏi lớp 12 Đề thi học sinh giỏi môn Toán THPT Ôn thi Toán 12 Bài tập Toán 12 Luyện thi HSG Toán 12Gợi ý tài liệu liên quan:
-
7 trang 347 0 0
-
Bộ đề thi học sinh giỏi môn Lịch sử lớp 12 cấp tỉnh năm 2020-2021 có đáp án
26 trang 336 0 0 -
8 trang 305 0 0
-
Đề thi học sinh giỏi môn GDCD lớp 12 năm 2023-2024 có đáp án - Trường THPT Mai Anh Tuấn, Thanh Hóa
28 trang 302 0 0 -
Bộ đề thi học sinh giỏi môn Toán lớp 9 năm 2017-2018 có đáp án
82 trang 244 0 0 -
8 trang 239 0 0
-
18 trang 200 0 0
-
Đề thi học sinh giỏi môn Toán lớp 12 năm 2023-2024 có đáp án - Trường THPT Mai Anh Tuấn, Thanh Hóa
9 trang 191 0 0 -
Đề thi học sinh giỏi môn Địa lí lớp 12 năm 2023-2024 có đáp án - Trường THPT Mai Anh Tuấn, Thanh Hóa
10 trang 149 0 0 -
Đề thi học sinh giỏi môn Vật lí lớp 12 năm 2023-2024 có đáp án - Trường THPT Mai Anh Tuấn, Thanh Hóa
18 trang 144 0 0