Đề kiểm tra chất lượng ôn thi Đại học lần 1 môn Toán, khối A và khối A1 năm học 2012-2013 - Trường THPT Hậu Lộc 4
Số trang: 6
Loại file: pdf
Dung lượng: 456.18 KB
Lượt xem: 10
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Đề kiểm tra chất lượng ôn thi Đại học lần 1 môn Toán, khối A và khối A1 năm học 2012-2013 là tài liệu bổ ích giúp các em ôn luyện và kiểm tra kiến thức chuẩn bị cho kì thi Đại học, Cao đẳng đạt điểm cao.
Nội dung trích xuất từ tài liệu:
Đề kiểm tra chất lượng ôn thi Đại học lần 1 môn Toán, khối A và khối A1 năm học 2012-2013 - Trường THPT Hậu Lộc 4 SỞ GD & ĐT THANH HOÁ ĐỀ KIỂM TRA CHẤT LƯỢNG ÔN THI ĐẠI HỌC TRƯỜNG THPT HẬU LỘC 4 LẦN 1, NĂM HỌC: 2012 - 2013 MÔN TOÁN, KHỐI A VÀ KHỐI A1 (Thời gian làm bài 180 phút)PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) 3x 4 Câu 1 (2,0 điểm). Cho hàm số: y . 4x 3 a) Khảo sát và vẽ đồ thị (C) của hàm số. b) Viết phương trình tiếp tuyến tại điểm A của (C), biết tiếp tuyến cắt trục hoành tại B sao cho tam giác OAB cân tại A. Câu 2 (1,0 điểm). Giải phương trình (2cos x 1)(sin x cos x) 1 . x 2 4 xy x 2 y 0 Câu 3 (1,0 điểm). Giải hệ phương trình 4 2 2 2 ( x, y ) . x 8 x y 3x 4 y 0 Câu 4 (1,0 điểm). Giải bất phương trình 2 log 9 9 x 9 log 1 28 2.3x x . 3 Câu 5 (1,0 điểm). Cho hình chóp S.ABCD có đáy ABCD là nửa lục giác đều nội tiếp trong đường tròn đường kính AD = 2a, SA (ABCD), SA a 6 , H là hình chiếu vuông góc của A trên SB. Tìm thể tích khối chóp H.SCD và tính khoảng cách giữa hai đường thẳng AD và SC. Câu 6 (1,0 điểm). Cho các số thực không âm a, b, c thỏa mãn ab bc ca 3 và a c. Tìm giá trị 1 2 3 nhỏ nhất của biểu thức P . (a 1) (b 1) (c 1)2 2 2PhÇn riªng (3,0 ®iÓm) ThÝ sinh chØ ®îc lµm mét trong hai phÇn (phÇn A hoÆc phÇn B) A. Theo ch¬ng tr×nh chuÈn C©u 7.a (1,0 điểm). Trong mặt phẳng toạ độ Oxy, cho hai đường thẳng d1 : 3 x y 5 0 , d 2 : 3x y 1 0 và điểm I(1; 2) . Viết phương trình đường thẳng đi qua I và cắt d 1, d 2 lần lượt tại A và B sao cho AB 2 2 . Câu 8.a (1,0 điểm). Trong mặt phẳng tọa độ Oxy, cho tam giác ABC nội tiếp trong đường tròn (T) : x 2 y 2 4 x 2 y 0 tâm I và đường phân giác trong của góc A có phương trình x y 0 . Biết diện tích tam giác ABC bằng ba lần diện tích tam giác IBC và điểm A có tung độ dương. Viết phương trình đường thẳng BC. 3 3 C©u 9.a (1,0 điểm). Cho n là số nguyên dương thỏa mãn An3 6Cn1 294. Tìm số hạng mà tích số n nx 4 y 2 mũ của x và y bằng 18 trong khai triển nhị thức Niu-tơn 3 y x 2 , xy 0 . B. Theo ch¬ng tr×nh n©ng cao C©u 7.b (1,0 điểm). Trong mặt phẳng tọa độ Oxy, cho hình thang ABCD vuông tại A và D, 82 6 CD 2AB , B(8;4) . Gọi H là hình chiếu vuông góc của D lên AC, M( ; ) là trung điểm của HC. 13 13 Phương trình cạnh AD là x y 2 0. Tìm tọa độ các đỉnh A, C, D của hình thang. x2 y2 C©u 8.b (1,0 điểm). Trong mặt phẳng toạ độ Oxy, cho A(3;0) và elíp ( E ) : 1. Tìm điểm B 9 1 và C thuộc Elíp sao cho tam giác ABC vuông cân tại A, biết điểm C có tung độ âm. Câu 9.b (1,0 điểm). Trên các cạnh AB, BC, CD, DA của hình vuông ABCD lần lượt lấy 1, 2, 3 và n điểm phân biệt khác A, B, C, D. Tìm n biết số tam giác lấy từ n + 6 điểm đã cho là 439. -------------------- HÕt -------------------- ThÝ sinh kh«ng ®îc sö dông tµi liÖu. C¸n bé coi thi kh«ng gi¶i thÝch g× thªm. Hä vµ tªn thÝ sinh: .................................................... Sè b¸o danh: ………………SỞ GD & ĐT THANH HOÁ ®¸p ¸n – thang ®iÓmTRƯỜNG THPT HẬU LỘC 4 ®Ò kiÓm tra chÊt lîng «n thi ®¹i häc LÇn 1 ----------***---------- n¨m häc: 2012 – 2013- m«n to¸n, khèi A vµ A1 (Đáp án – Thang điểm gồm 05 trang) ĐÁP ÁN – THANG ĐIỂM Câu Đáp án Điểm 1 a. (1,0 điểm) (2,0 3 0.25 điểm) * Tập xác định D R \ 4 * Sự biến thiên: 25 + Chiều biến thiên: y 0, x D (4 x 3) 2 3 3 Hàm số đồng biến trên các khoảng ; và ; . 4 4 + Cực trị: Hàm số không có cực trị. 0.25 3 3 + Giới hạn và tiệm cận: lim y lim y tiệm cận ngang: y = x x 4 ...
Nội dung trích xuất từ tài liệu:
Đề kiểm tra chất lượng ôn thi Đại học lần 1 môn Toán, khối A và khối A1 năm học 2012-2013 - Trường THPT Hậu Lộc 4 SỞ GD & ĐT THANH HOÁ ĐỀ KIỂM TRA CHẤT LƯỢNG ÔN THI ĐẠI HỌC TRƯỜNG THPT HẬU LỘC 4 LẦN 1, NĂM HỌC: 2012 - 2013 MÔN TOÁN, KHỐI A VÀ KHỐI A1 (Thời gian làm bài 180 phút)PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) 3x 4 Câu 1 (2,0 điểm). Cho hàm số: y . 4x 3 a) Khảo sát và vẽ đồ thị (C) của hàm số. b) Viết phương trình tiếp tuyến tại điểm A của (C), biết tiếp tuyến cắt trục hoành tại B sao cho tam giác OAB cân tại A. Câu 2 (1,0 điểm). Giải phương trình (2cos x 1)(sin x cos x) 1 . x 2 4 xy x 2 y 0 Câu 3 (1,0 điểm). Giải hệ phương trình 4 2 2 2 ( x, y ) . x 8 x y 3x 4 y 0 Câu 4 (1,0 điểm). Giải bất phương trình 2 log 9 9 x 9 log 1 28 2.3x x . 3 Câu 5 (1,0 điểm). Cho hình chóp S.ABCD có đáy ABCD là nửa lục giác đều nội tiếp trong đường tròn đường kính AD = 2a, SA (ABCD), SA a 6 , H là hình chiếu vuông góc của A trên SB. Tìm thể tích khối chóp H.SCD và tính khoảng cách giữa hai đường thẳng AD và SC. Câu 6 (1,0 điểm). Cho các số thực không âm a, b, c thỏa mãn ab bc ca 3 và a c. Tìm giá trị 1 2 3 nhỏ nhất của biểu thức P . (a 1) (b 1) (c 1)2 2 2PhÇn riªng (3,0 ®iÓm) ThÝ sinh chØ ®îc lµm mét trong hai phÇn (phÇn A hoÆc phÇn B) A. Theo ch¬ng tr×nh chuÈn C©u 7.a (1,0 điểm). Trong mặt phẳng toạ độ Oxy, cho hai đường thẳng d1 : 3 x y 5 0 , d 2 : 3x y 1 0 và điểm I(1; 2) . Viết phương trình đường thẳng đi qua I và cắt d 1, d 2 lần lượt tại A và B sao cho AB 2 2 . Câu 8.a (1,0 điểm). Trong mặt phẳng tọa độ Oxy, cho tam giác ABC nội tiếp trong đường tròn (T) : x 2 y 2 4 x 2 y 0 tâm I và đường phân giác trong của góc A có phương trình x y 0 . Biết diện tích tam giác ABC bằng ba lần diện tích tam giác IBC và điểm A có tung độ dương. Viết phương trình đường thẳng BC. 3 3 C©u 9.a (1,0 điểm). Cho n là số nguyên dương thỏa mãn An3 6Cn1 294. Tìm số hạng mà tích số n nx 4 y 2 mũ của x và y bằng 18 trong khai triển nhị thức Niu-tơn 3 y x 2 , xy 0 . B. Theo ch¬ng tr×nh n©ng cao C©u 7.b (1,0 điểm). Trong mặt phẳng tọa độ Oxy, cho hình thang ABCD vuông tại A và D, 82 6 CD 2AB , B(8;4) . Gọi H là hình chiếu vuông góc của D lên AC, M( ; ) là trung điểm của HC. 13 13 Phương trình cạnh AD là x y 2 0. Tìm tọa độ các đỉnh A, C, D của hình thang. x2 y2 C©u 8.b (1,0 điểm). Trong mặt phẳng toạ độ Oxy, cho A(3;0) và elíp ( E ) : 1. Tìm điểm B 9 1 và C thuộc Elíp sao cho tam giác ABC vuông cân tại A, biết điểm C có tung độ âm. Câu 9.b (1,0 điểm). Trên các cạnh AB, BC, CD, DA của hình vuông ABCD lần lượt lấy 1, 2, 3 và n điểm phân biệt khác A, B, C, D. Tìm n biết số tam giác lấy từ n + 6 điểm đã cho là 439. -------------------- HÕt -------------------- ThÝ sinh kh«ng ®îc sö dông tµi liÖu. C¸n bé coi thi kh«ng gi¶i thÝch g× thªm. Hä vµ tªn thÝ sinh: .................................................... Sè b¸o danh: ………………SỞ GD & ĐT THANH HOÁ ®¸p ¸n – thang ®iÓmTRƯỜNG THPT HẬU LỘC 4 ®Ò kiÓm tra chÊt lîng «n thi ®¹i häc LÇn 1 ----------***---------- n¨m häc: 2012 – 2013- m«n to¸n, khèi A vµ A1 (Đáp án – Thang điểm gồm 05 trang) ĐÁP ÁN – THANG ĐIỂM Câu Đáp án Điểm 1 a. (1,0 điểm) (2,0 3 0.25 điểm) * Tập xác định D R \ 4 * Sự biến thiên: 25 + Chiều biến thiên: y 0, x D (4 x 3) 2 3 3 Hàm số đồng biến trên các khoảng ; và ; . 4 4 + Cực trị: Hàm số không có cực trị. 0.25 3 3 + Giới hạn và tiệm cận: lim y lim y tiệm cận ngang: y = x x 4 ...
Tìm kiếm theo từ khóa liên quan:
Hệ phương trình Bất phương trình Đề kiểm tra chất lượng ôn thi Đại học Đề ôn thi Đại học môn Toán năm 2013 Đề ôn thi Đại học môn Toán Đề ôn thi Đại họcGợi ý tài liệu liên quan:
-
Đề ôn thi Đại học môn Toán - Trần Sĩ Tùng - Đề số 16
1 trang 106 0 0 -
133 trang 66 0 0
-
Giáo án Đại số lớp 9 (Học kì 2)
81 trang 49 0 0 -
31 trang 47 0 0
-
Tuyển tập các bài toán từ đề thi chọn đội tuyển các tỉnh-thành phố năm học 2018-2019
55 trang 44 0 0 -
Chuyên đề Hệ phương trình Toán 11
151 trang 38 0 0 -
Công phá môn Toán 8+ đề thi vào lớp 10
270 trang 37 0 0 -
Bài giảng Toán cao cấp - Vũ Khắc Bảy
136 trang 37 0 0 -
Đề thi kết thúc học phần Đại số tuyến tính năm 2019 - Đề số 12 (26/08/2019)
1 trang 36 0 0 -
43 trang 34 0 0