ĐỀ KIÊM̉ TRA HỌC KÌ I - NĂM HỌC 2010 – 2011 MÔN TOÁN – KHỐI 11 Trường THPT Chuyên Lê H ồng Phong
Số trang: 5
Loại file: doc
Dung lượng: 238.00 KB
Lượt xem: 9
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Câu 1. Giải các phương trình sau:a) tan2x + cotx = 4cos2x b)(1 2cos x)(1 cos x) 1(1 2cos x).sin x- + =+ .Câu 2.a) Cho tập hợp X = {1; 2; 3; 4; 5; 6; 7; 8; 9}. Hỏi có bao nhiêu số tự nhiên có 3chữ số phân biệt mà tổng của 3 chữ số là một số lẻ.b) Gieo một con súc sắc cân đối liên tiếp 5 lần độc lập. Tính xác suất để trong 5lần gieo có đúng 2 lần xuất hiện mặt 1 chấm.c) Tính tổng : T = 0 1 2 24 25C50...
Nội dung trích xuất từ tài liệu:
ĐỀ KIÊM̉ TRA HỌC KÌ I - NĂM HỌC 2010 – 2011 MÔN TOÁN – KHỐI 11 Trường THPT Chuyên Lê H ồng Phong WWW.ToanCapBa.Net Trường THPT Chuyên Lê Hồng Phong ĐỀ KIÊM TRA HỌC KÌ I − NĂM HỌC 2010 – 2011 ̉ MÔN TOÁN – KHỐI 11 Thời gian : 90 phút Mỗi học sinh phải ghi tên lớp bên cạnh họ và tên thí sinh và ghi “Ban A, B” hay “Ban D, SN” vào đầu bài làm tùy theo loại lớp của mình. – Ban A, B làm các câu 1, 2, 3, 4, 5. Điểm của các câu lân lượt là 2,5; 3; 1; 1; 2,5. ̀ – Ban D, SN làm các câu 1, 2ab, 3, 4, 5. Điểm của các câu lân lượt là 2,5; 3; 1; 1; 2,5. ̀ Câu 1. Giải các phương trình sau: (1 − 2 cos x)(1 + cos x) = 1. a) tan2x + cotx = 4cos2x b) (1 + 2 cos x).sin x Câu 2. a) Cho tập hợp X = {1; 2; 3; 4; 5; 6; 7; 8; 9}. Hỏi có bao nhiêu số t ự nhiên có 3 chữ số phân biệt mà tổng của 3 chữ số là một số lẻ. b) Gieo một con súc sắc cân đối liên tiếp 5 lần độc lập. Tính xác suất để trong 5 lần gieo có đúng 2 lần xuất hiện mặt 1 chấm. c) Tính tổng : T = C50 − C1 + C50 − .... + C50 − C50 0 2 24 25 50 Câu 3. Goi d là công sai cua câp số công có số hang thứ 8 băng 15 và tông cua 9 sô ́ ̣ ̉ ́ ̣ ̣ ̀ ̉ ̉ dd....d dd....d hang đâu tiên là 81. Tính tổng: S = d + dd + ddd + ... + 123 (trong đó 123 là ̣ ̀ n so� d n so� d số tự nhiên gôm n chữ số băng d) ̀ ̀ 2 2 Câu 4. Tìm phương trình ảnh của đường elip (E): x + y = 1 qua phép tịnh tiến theo 94 r vectơ u = (−3,4) Câu 5. Cho hình chóp S.ABC có G là trọng tâm c ủa tam giác ABC. G ọi M, N là 2 điểm trên cạnh SA sao cho SM = MN = NA. a) Chứng minh GM // mp(SBC). b) Gọi D là điểm đối xứng của A qua G. Chứng minh mp(MCD) // mp(NBG).c) Gọi H là giao điêm cua đường thẳng MD với mp(SBC). Ch ứng minh H là trong tâm ̉ ̉ ̣ của tam giac SBC. ́ WWW.ToanCapBa.Net WWW.ToanCapBa.Net HẾT. ĐAP AN VÀ BIÊU ĐIÊM TOÁN 11 – HKI ( 2010−2011) ́ ́ ̉ ̉Câu AB D, SN = 2.5đ = 2.5đ 1 Giải pt : tan2x + cotx = 4cos2x a (1) ∑=1.25 ∑=1.25 0.25 0.25 π π +k x Điêu kiên: cos2x.sinx ≠ 0 ⇔ 4 2 ̀ ̣ x kπ sin2x cosx + = 4cos2 x (1) ⇔ cos2x sinx 0.25 0.25 cosx = 4cos2 x ⇔ sinx.cos2x ⇔ cosx(1 – sin4x) = 0 0.25 0.25 0.25 0.25 π cosx = 0 ⇔x = + kπ (nhận) 2 0.25 0.25 π π sin4x = 1� x = + k (nhận) 8 2 * Nếu điều kiện có đặt đúng mà không giải chi tiết : không trừ * Nghiệm không ghi nhận, loại : trừ 0.25đ cả câu (1 − 2 cos x)(1 + cos x) b = 1 (2) Giải pt : ∑=1.25 ∑=1.25 (1 + 2 cos x).sin x ...
Nội dung trích xuất từ tài liệu:
ĐỀ KIÊM̉ TRA HỌC KÌ I - NĂM HỌC 2010 – 2011 MÔN TOÁN – KHỐI 11 Trường THPT Chuyên Lê H ồng Phong WWW.ToanCapBa.Net Trường THPT Chuyên Lê Hồng Phong ĐỀ KIÊM TRA HỌC KÌ I − NĂM HỌC 2010 – 2011 ̉ MÔN TOÁN – KHỐI 11 Thời gian : 90 phút Mỗi học sinh phải ghi tên lớp bên cạnh họ và tên thí sinh và ghi “Ban A, B” hay “Ban D, SN” vào đầu bài làm tùy theo loại lớp của mình. – Ban A, B làm các câu 1, 2, 3, 4, 5. Điểm của các câu lân lượt là 2,5; 3; 1; 1; 2,5. ̀ – Ban D, SN làm các câu 1, 2ab, 3, 4, 5. Điểm của các câu lân lượt là 2,5; 3; 1; 1; 2,5. ̀ Câu 1. Giải các phương trình sau: (1 − 2 cos x)(1 + cos x) = 1. a) tan2x + cotx = 4cos2x b) (1 + 2 cos x).sin x Câu 2. a) Cho tập hợp X = {1; 2; 3; 4; 5; 6; 7; 8; 9}. Hỏi có bao nhiêu số t ự nhiên có 3 chữ số phân biệt mà tổng của 3 chữ số là một số lẻ. b) Gieo một con súc sắc cân đối liên tiếp 5 lần độc lập. Tính xác suất để trong 5 lần gieo có đúng 2 lần xuất hiện mặt 1 chấm. c) Tính tổng : T = C50 − C1 + C50 − .... + C50 − C50 0 2 24 25 50 Câu 3. Goi d là công sai cua câp số công có số hang thứ 8 băng 15 và tông cua 9 sô ́ ̣ ̉ ́ ̣ ̣ ̀ ̉ ̉ dd....d dd....d hang đâu tiên là 81. Tính tổng: S = d + dd + ddd + ... + 123 (trong đó 123 là ̣ ̀ n so� d n so� d số tự nhiên gôm n chữ số băng d) ̀ ̀ 2 2 Câu 4. Tìm phương trình ảnh của đường elip (E): x + y = 1 qua phép tịnh tiến theo 94 r vectơ u = (−3,4) Câu 5. Cho hình chóp S.ABC có G là trọng tâm c ủa tam giác ABC. G ọi M, N là 2 điểm trên cạnh SA sao cho SM = MN = NA. a) Chứng minh GM // mp(SBC). b) Gọi D là điểm đối xứng của A qua G. Chứng minh mp(MCD) // mp(NBG).c) Gọi H là giao điêm cua đường thẳng MD với mp(SBC). Ch ứng minh H là trong tâm ̉ ̉ ̣ của tam giac SBC. ́ WWW.ToanCapBa.Net WWW.ToanCapBa.Net HẾT. ĐAP AN VÀ BIÊU ĐIÊM TOÁN 11 – HKI ( 2010−2011) ́ ́ ̉ ̉Câu AB D, SN = 2.5đ = 2.5đ 1 Giải pt : tan2x + cotx = 4cos2x a (1) ∑=1.25 ∑=1.25 0.25 0.25 π π +k x Điêu kiên: cos2x.sinx ≠ 0 ⇔ 4 2 ̀ ̣ x kπ sin2x cosx + = 4cos2 x (1) ⇔ cos2x sinx 0.25 0.25 cosx = 4cos2 x ⇔ sinx.cos2x ⇔ cosx(1 – sin4x) = 0 0.25 0.25 0.25 0.25 π cosx = 0 ⇔x = + kπ (nhận) 2 0.25 0.25 π π sin4x = 1� x = + k (nhận) 8 2 * Nếu điều kiện có đặt đúng mà không giải chi tiết : không trừ * Nghiệm không ghi nhận, loại : trừ 0.25đ cả câu (1 − 2 cos x)(1 + cos x) b = 1 (2) Giải pt : ∑=1.25 ∑=1.25 (1 + 2 cos x).sin x ...
Tìm kiếm theo từ khóa liên quan:
môn toán lớp 11 đề thi toán bài tập toán toán học phổ thông ôn tập toán đề thi học kì 1Gợi ý tài liệu liên quan:
-
Đề thi học kì 1 môn Ngữ văn lớp 6 năm 2022-2023 có đáp án - Trường THCS Đỗ Đăng Tuyển
7 trang 280 0 0 -
Đề thi học kì 1 môn Giáo dục địa phương lớp 11 năm 2023-2024 - Trường THPT Bố Hạ, Bắc Giang
2 trang 245 7 0 -
Đề thi học kì 1 môn Ngữ văn lớp 7 năm 2022-2023 có đáp án - Phòng GD&ĐT Thạch Hà
5 trang 227 8 0 -
Đề thi học kì 1 môn Công nghệ lớp 7 năm 2022-2023 có đáp án - Trường THCS Phan Bội Châu, Hiệp Đức
12 trang 196 0 0 -
3 trang 176 0 0
-
Đề thi học kì 1 môn Hóa lý in năm 2020-2021 có đáp án - Trường ĐH Sư Phạm Kỹ Thuật TP.HCM
6 trang 173 0 0 -
6 trang 124 0 0
-
4 trang 122 0 0
-
Đề thi học kì 1 môn Tiếng Anh lớp 8 năm 2022-2023 - Trường THCS Lê Quý Đôn, Long Biên
4 trang 115 4 0 -
14 trang 107 0 0