ĐỀ KSCL ÔN THI ĐẠI HỌC. NĂM 2012 - 2013 MÔN: TOÁN. KHỐI A - B - D.
Số trang: 6
Loại file: doc
Dung lượng: 445.50 KB
Lượt xem: 14
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Câu 4. (1 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAD là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Tính thể tích khối chóp S.ABCD và tính khoảng cách giữa hai đường thẳng SB và HC theo a, với H là trung điểm của AD. Câu 5. (1 điểm) Cho các số không âm thỏa mãn Chứng minh rằng .
Nội dung trích xuất từ tài liệu:
ĐỀ KSCL ÔN THI ĐẠI HỌC. NĂM 2012 - 2013 MÔN: TOÁN. KHỐI A - B - D. ĐỀ KSCL ÔN THI ĐẠI HỌC. NĂM 2012 - 2013SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HOÁ TRƯỜNG THPT TỐNG DUY TÂN. MÔN: TOÁN. KHỐI A - B - D. Thời gian làm bài: 180 phút.I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) 2x −1 ( C) .Câu 1. (2 điểm) Cho hàm số y = x +1 a) Khảo sát sự biến thiên và vẽ đồ thị ( C ) của hàm số. b) Tìm m để đường thẳng y = − x + m cắt đồ thị ( C ) tại hai điểm phân biệt A, B sao cho tam giác ABM là tam giác đều, biết rằng M = (2; 5).Câu 2. (2 điểm) � π� 3cos � + � x π a) Giải phương trình: � � � 4� . 2 − cos � + x � x + sin x) = (cos cot x − 1 4 � � x 2 y + 2 y + x = 4 xy b) Giải hệ phương trình: 1 . 1x + + =3 2 x xy y 3x + 1 dx .Câu 3. (1 điểm) Tìm sin 2 2 xCâu 4. (1 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAD là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Tính thể tích khối chóp S.ABCD và tính khoảng cách giữa hai đường thẳng SB và HC theo a, với H là trung điểm của AD.Câu 5. (1 điểm) Cho các số không âm x, y , z thỏa mãn: x + y + z = 1. Chứng minh rằng: 7 xy + yz + zx − 2 xyz . 27II. PHẦN RIÊNG (3,0 điểm) : Thí sinh chỉ được làm một trong hai phần (phần A hoặc B).A. Theo chương trình Chuẩn.Câu 6a. (2 điểm) a) Trong mặt phẳng tọa độ Oxy, cho hình thoi ABCD có một đường chéo nằm trên đường thẳng ∆ có phương trình 3 x + y − 7 = 0 và B(0; -3). Tìm các tọa độ các đỉnh còn lại của hình thoi, biết diện tích của hình thoi bằng 20. b) Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; -2; 2), B(-1; - 4; 3). Hãy xác định tọa độ điểm M trên trục Oz sao cho khoảng cách từ M đến đường thẳng AB là nhỏ nhất.Câu 7a. (1 điểm) Một hộp đừng 20 viên bi, trong đó có 7 viên bi màu trắng, 9 viên bi màu vàng và 4 viên bi màu đỏ. Lấy ngẫu nhiên từ hộp ra 5 viên bi. Tính xác suất để 5 viên bi được lấy ra có không quá hai màu.B. Theo chương trình Nâng cao.Câu 6b. (2 điểm) � 4� a) Trong mặt phẳng toạ độ Oxy, cho hình thoi ABCD có tâm I(3; 3) và AC = 2BD. Điểm M � �huộc 2; t � 3� � 13 � đường thẳng AB, điểm N � �thuộc đường thẳng CD. Viết phương trình đường thẳng chứa đường 3; � 3� chéo BD, biết đỉnh B có hoành độ nhỏ hơn 3. b) Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; -2; 2), B(-1; - 4; 3). Hãy xác định tọa độ điểm I trên trục Oz, biết rằng mặt cầu tâm I tiếp xúc với đường thẳng A B có diện tích nhỏ nhất. x −1 1 Câu 7b. (1 điểm) Giải phương trình: log 9 ( x − 5 x + 6) = log 3 + log 3 (3 − x) . 2 2 2 2 ------------------------Hết------------------------ ĐỀ KSCL ÔN THI ĐẠI HỌC. NĂM 2012 - 2013SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HOÁ TRƯỜNG THPT TỐNG DUY TÂN. MÔN: TOÁN. KHỐI A - B - D. Thời gian làm bài: 180 phút. PHẦN CHUNG + Tập xác định D = ᄀ \ { −1} 3 + Sự biến thiên y = > 0 ∀x −1 ( x + 1) 2 0,25 Hàm đồng biến trên các khoảng ( − ; −1) và ( −1; + ) Hàm số không có cực trị. + Giới hạn và tiệm cận lim y = lim y = 2 nên đồ thị có T/c ngang y = 2 x− x+ lim− y = + , lim+ y = − 0.25 nên đồ thị có T/c đứng x = -1 −1 −1 x x a Bảng biến thiên x 1 − + 2 y’ - - 0,25 + 2 yCâu 1 2 - Đồ thị ...
Nội dung trích xuất từ tài liệu:
ĐỀ KSCL ÔN THI ĐẠI HỌC. NĂM 2012 - 2013 MÔN: TOÁN. KHỐI A - B - D. ĐỀ KSCL ÔN THI ĐẠI HỌC. NĂM 2012 - 2013SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HOÁ TRƯỜNG THPT TỐNG DUY TÂN. MÔN: TOÁN. KHỐI A - B - D. Thời gian làm bài: 180 phút.I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) 2x −1 ( C) .Câu 1. (2 điểm) Cho hàm số y = x +1 a) Khảo sát sự biến thiên và vẽ đồ thị ( C ) của hàm số. b) Tìm m để đường thẳng y = − x + m cắt đồ thị ( C ) tại hai điểm phân biệt A, B sao cho tam giác ABM là tam giác đều, biết rằng M = (2; 5).Câu 2. (2 điểm) � π� 3cos � + � x π a) Giải phương trình: � � � 4� . 2 − cos � + x � x + sin x) = (cos cot x − 1 4 � � x 2 y + 2 y + x = 4 xy b) Giải hệ phương trình: 1 . 1x + + =3 2 x xy y 3x + 1 dx .Câu 3. (1 điểm) Tìm sin 2 2 xCâu 4. (1 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAD là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Tính thể tích khối chóp S.ABCD và tính khoảng cách giữa hai đường thẳng SB và HC theo a, với H là trung điểm của AD.Câu 5. (1 điểm) Cho các số không âm x, y , z thỏa mãn: x + y + z = 1. Chứng minh rằng: 7 xy + yz + zx − 2 xyz . 27II. PHẦN RIÊNG (3,0 điểm) : Thí sinh chỉ được làm một trong hai phần (phần A hoặc B).A. Theo chương trình Chuẩn.Câu 6a. (2 điểm) a) Trong mặt phẳng tọa độ Oxy, cho hình thoi ABCD có một đường chéo nằm trên đường thẳng ∆ có phương trình 3 x + y − 7 = 0 và B(0; -3). Tìm các tọa độ các đỉnh còn lại của hình thoi, biết diện tích của hình thoi bằng 20. b) Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; -2; 2), B(-1; - 4; 3). Hãy xác định tọa độ điểm M trên trục Oz sao cho khoảng cách từ M đến đường thẳng AB là nhỏ nhất.Câu 7a. (1 điểm) Một hộp đừng 20 viên bi, trong đó có 7 viên bi màu trắng, 9 viên bi màu vàng và 4 viên bi màu đỏ. Lấy ngẫu nhiên từ hộp ra 5 viên bi. Tính xác suất để 5 viên bi được lấy ra có không quá hai màu.B. Theo chương trình Nâng cao.Câu 6b. (2 điểm) � 4� a) Trong mặt phẳng toạ độ Oxy, cho hình thoi ABCD có tâm I(3; 3) và AC = 2BD. Điểm M � �huộc 2; t � 3� � 13 � đường thẳng AB, điểm N � �thuộc đường thẳng CD. Viết phương trình đường thẳng chứa đường 3; � 3� chéo BD, biết đỉnh B có hoành độ nhỏ hơn 3. b) Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; -2; 2), B(-1; - 4; 3). Hãy xác định tọa độ điểm I trên trục Oz, biết rằng mặt cầu tâm I tiếp xúc với đường thẳng A B có diện tích nhỏ nhất. x −1 1 Câu 7b. (1 điểm) Giải phương trình: log 9 ( x − 5 x + 6) = log 3 + log 3 (3 − x) . 2 2 2 2 ------------------------Hết------------------------ ĐỀ KSCL ÔN THI ĐẠI HỌC. NĂM 2012 - 2013SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HOÁ TRƯỜNG THPT TỐNG DUY TÂN. MÔN: TOÁN. KHỐI A - B - D. Thời gian làm bài: 180 phút. PHẦN CHUNG + Tập xác định D = ᄀ \ { −1} 3 + Sự biến thiên y = > 0 ∀x −1 ( x + 1) 2 0,25 Hàm đồng biến trên các khoảng ( − ; −1) và ( −1; + ) Hàm số không có cực trị. + Giới hạn và tiệm cận lim y = lim y = 2 nên đồ thị có T/c ngang y = 2 x− x+ lim− y = + , lim+ y = − 0.25 nên đồ thị có T/c đứng x = -1 −1 −1 x x a Bảng biến thiên x 1 − + 2 y’ - - 0,25 + 2 yCâu 1 2 - Đồ thị ...
Tìm kiếm theo từ khóa liên quan:
đề thi thử đại học luyện thi đại học ôn thi vật lý kiến thức vật lý thi vật lý đại học 2013 giải đề thi lý 2013Gợi ý tài liệu liên quan:
-
Bài giảng chuyên đề luyện thi đại học Vật lý – Chương 9 (Chủ đề 1): Đại cương về hạt nhân nguyên tử
0 trang 106 0 0 -
Kỹ năng ôn tập và làm bài thi Đại học môn Vật lý đạt hiệu quả cao
9 trang 105 0 0 -
Đề thi thử đại học môn Vật lý - Khối A, A1, V: Đề số 7
5 trang 96 0 0 -
Bài toán về thời gian, quãng đường ( đáp án trắc nghiệm ) - Đặng Việt Hùng
4 trang 93 0 0 -
0 trang 87 0 0
-
Bộ 14 đề thi đại học có đáp án 2010
153 trang 54 0 0 -
Môn Toán 10-11-12 và các đề thi trắc nghiệm: Phần 1
107 trang 47 0 0 -
Luyện thi đại học môn Vật lý mã đề 174_01
16 trang 43 0 0 -
Luyện thi đại học môn Vật lý - Mã đề 175_23
14 trang 39 0 0 -
Luyện thi đại học môn Vật lý - Mã đề 175_07
8 trang 39 0 0