Danh mục

Đề ôn thi ĐH môn Toán - THPT Sầm sơn (2012-2013) khối B

Số trang: 7      Loại file: pdf      Dung lượng: 283.05 KB      Lượt xem: 8      Lượt tải: 0    
10.10.2023

Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Hãy tham khảo đề ôn thi ĐH môn Toán - THPT Sầm sơn (2012-2013) khối B kèm đáp án môn Toán để giúp các em biết thêm cấu trúc đề thi như thế nào, rèn luyện kỹ năng giải bài tập và có thêm tư liệu tham khảo chuẩn bị cho kì thi sắp tới đạt điểm tốt hơn.
Nội dung trích xuất từ tài liệu:
Đề ôn thi ĐH môn Toán - THPT Sầm sơn (2012-2013) khối B SỞ GD&ĐT THANH HÓA ĐỀ KIỂM TRA CHẤT LƯỢNG ÔN THI ĐẠI HỌC Trường THPT Sầm sơn Khối B,D năm học 2012 - 2013 Môn Toán. Thời gian : 180 phút (Không kể thời gian giao đề ) I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH : ( 7 điểm) Câu I: ( 2 điểm) Cho hàm số: y = x3 – 3x2 + 2 a) Khảo sát và vẽ đồ thị hàm số b) Viết phương trình tiếp tuyến với đồ thị ( C ) tại điểm M. Biết điểm M cùng với hai điểm cực trị của đồ thị hàm số ( C ) tạo thành tam giác có diện tích bằng 6 Câu II: ( 2 điểm ) 2x2 1) Giải bất phương trình:  x  21 3  9  2x  2   2) Giải phương trình: sin3x+cos3x -2 2 cos x    1 =0  4 Câu III: ( 2 điểm) cho hình chóp S.ABCD có đáy ABCD là hình vuông cạch a, tam giác SAB đều và năm trong mặt phẳng vuông góc với đáy. Gọi M,N,P,K lần lượt là trung điểm của BC, CD, SD,SB. a) Tính thể tích của khối chóp S.ABMN b) Tính khoảng cách giữa hai đường thẳng MK và AP Câu IV: ( 1 điểm ) Cho tam giác ABC nhọn có AB = c, AC=b; BC = a thỏa mãn: abc=1 ab  bc bc  ca ca  ab Tìm giá trị nhỏ nhất của: P  2 2 2  2 2 2  2 a b c b c a c  a2  b2 II.PHẦN RIÊNG: ( 3 điểm ) Thí sinh chỉ được làm một trong hai phần ( Phần 1 hoặc phần 2 ) 1.Theo chương trình chuẩn: Câu V.a ( 2 điểm ) 1) Trong hệ trục tọa độ 0xy cho đường thẳng d: x-y+1 = 0 và đường tròn (C): x2+y2-4x-2y-4 = 0 có tâm I. Tìm tọa độ điểm M trên d để từ M kẻ được hai tiếp tuyến với (C) có các tiếp điểm là A, B sao cho tứ giác IAMB là hình vuông. 2) Một kệ sách có 15 quyển sách (4 quyển toán khác nhau, 5 quyển lý khác nhau, 6 quyển văn khác nhau). Người ta lấy ngẫu nhiên 4 quyển sách từ kệ. Tính xác suất để số sách lấy ra không đủ 3 môn. Câu VI.a ( 1 điểm ) Giải phương trình: 2 log 5 (3 x  1)  1  log 5 ( 2 x  1) . 3 2.Theo chương trình nâng cao: Câu V.b ( 2 điểm ) x y1) Trong mặt phẳng tọa độ 0xy cho Elíp có phương trình ở dạng chính tắc: 2  2  1a  b  0 a b(E) hình chữ nhật cơ sở có diện tích bằng 24, chu vi bằng 20 và điểm M(1;1). Viết phương trìnhđường thẳng qua M cắt (E) tại hai điểm phân biệt sao cho M là trung điểm n  lg103x   5 2 x2 lg 3 2) Tìm các giá trị của x trong khai triển nhị thức Newton:  2  . Biết số hạng  thứ 6 của khai triển bằng 21 và C n  C n3  2C n2 1Câu VI.b ( 1 điểm ) Giải phương trình: 4 x 2  3 x .x  31 x  2 x 2 .3 x  2x  6 CảmơnbạnKhánhHòa(k.hoa94@zing.com)gửitớiwww.laisac.page.tl SỞ GD&ĐT THANH HÓA ĐÁP ÁN ĐỀ KIỂM TRA CHẤT LƯỢNG ÔN THI ĐẠI HỌC Trường THPT Sầm sơn Khối B,D năm học 2012 - 2013 2 2 Môn Toán. Thời gian : 180 phút CảmơnbạnKhánhHòa(k.hoa94@zing.com)gửitớiwww.laisac.page.tl PHẦN CHUNG CHO TẤT CẢ THÍ SINH : ( 7 điểm) Câu ý Nội dung ĐiểmCâu I a Cho hàm số: y = x3 – 3x2 + 2 b) Khảo sát và vẽ đồ thị hàm số +Tập xác định: R Giới hạn tại vô cực: lim y   ; lim y   0,25đ x   x   / 2 + Sự biến thiên: y = 3x -6x *Bảng biến thiên: x - 0 2 + ...

Tài liệu được xem nhiều: