Đề thi chọn đội tuyển học sinh giỏi lớp 12 môn Giải toán bằng máy tính Casio (Vòng 2) - THPT Hàm Rồng (Thanh Hóa)
Số trang: 2
Loại file: pdf
Dung lượng: 98.72 KB
Lượt xem: 13
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Dưới đây là Đề thi chọn đội tuyển học sinh giỏi lớp 12 môn Giải toán bằng máy tính Casio (Vòng 2) của Trường THPT Hàm Rồng (Thanh Hóa) kèm đáp án. Mời các quý thầy cô giáo cùng các em học sinh tham khảo.
Nội dung trích xuất từ tài liệu:
Đề thi chọn đội tuyển học sinh giỏi lớp 12 môn Giải toán bằng máy tính Casio (Vòng 2) - THPT Hàm Rồng (Thanh Hóa) së gi¸o dôc vµ ®µo t¹o thanh ho¸ ®Ò thi chän ®éi tuyÓn häc sinh giái líp 12 Tr−êng thpt hµm rång M«n: Gi¶i to¸n b»ng m¸y tÝnh Casio - Vßng 2. ................................. Thêi gian lµm bµi: 120 phót Ngµy thi: 03 / 12 / 2009Chó ý : 1. ThÝ sinh chØ ®−îc sö dông m¸y tÝnh Casio f x - 570MS trë xuèng. 2. NÕu kh«ng nãi g× thªm, h·y tÝnh chÝnh x¸c ®Õn 6 ch÷ sè thËp ph©n. 3. NÕu tÝnh gãc th× tÝnh chÝnh x¸c ®Õn ®é, phót, gi©y. §Ò bµi KÕt qu¶ x2 Bµi 1 ( 2 ®iÓm ) Cho hµm sè y = (C). x +1 T×m to¹ ®é tiÕp ®iÓm cña tiÕp tuyÕn víi (C) ®i qua ®iÓm A(1; -2). 2x − 3 Bµi 2 ( 2 ®iÓm ) Cho hµm sè y = (C). T×m to¹ ®é hai ®iÓm A, B x −1 thuéc hai nh¸nh kh¸c nhau cña (C) sao cho ®é dµi ®o¹n AB ng¾n nhÊt. Bµi 3 ( 2 ®iÓm ) Cho P(x) = x4 + ax3 + bx2 + cx + d. BiÕt P(1) = -1807, P(2) = -14893, P(2008) = -8086401493, P(2010) = 8130602003. H·y tÝnh: P(2009) ? Bµi 4 ( 2 ®iÓm ) T×m nghiÖm x ∈ (0; π ) cña ph−¬ng tr×nh: 1 2 48 − − (1 + cot 2 x. cot x ) = 0 cos x sin 2 x 4 Bµi 5 ( 2 ®iÓm ) Cho a > 0, b > 0 vµ a + b = 1. T×m gi¸ trÞ lín nhÊt, nhá nhÊt cña biÓu thøc F = a12 + b12. 10 2 3 4 Bµi 6 ( 2 ®iÓm ) Cho P( x) = 1 + x− x . 2 3 TÝnh tæng tÊt c¶ c¸c hÖ sè cña c¸c sè h¹ng trong khai triÓn cña P(x). Bµi 7 ( 2 ®iÓm ) Cã 15 häc sinh giái líp A, 12 häc sinh giái líp B, 9 häc sinh giái líp C. TÝnh x¸c suÊt ®Ó chän ®−îc 10 em dù thi HSG tØnh cã ®ñ häc sinh 3 líp trªn biÕt kh¶ n¨ng cña c¸c em lµ nh− nhau. Bµi 8 ( 2 ®iÓm ) Cho ABC. Trªn c¹nh AC lÊy ®iÓm D sao cho AD = 3DC. biÕt gãc A b»ng 400 vµ gãc ∠ BDC = 650. TÝnh sè ®o cña gãc BCA. Bµi 9 ( 2 ®iÓm ) Cho tø diÖn ABCD biÕt: AB = 10, BC = 11, CA = 12, DA = DB = DC = 9. TÝnh thÓ tÝch tø diÖn ABCD. x+x 3 Bµi 10 ( 2 ®iÓm) Cho hµm sè f ( x) = . x2 + 3 TÝnh tæng: S = f (cot 2 1) + f (cot 2 2) + f (cot 2 3) + ... + f (cot 2 99) + f (cot 2 100) së gi¸o dôc vµ ®µo t¹o thanh ho¸ §¸p ¸n ®Ò thi chän ®éi tuyÓn häc sinh giái 12 Tr−êng thpt hµm rång M«n: Gi¶i to¸n b»ng m¸y tÝnh Casio - Vßng 2. ................................. Thêi gian lµm bµi: 120 phót Ngµy thi: 03 / 12 / 2009Chó ý : 1. ThÝ sinh chØ ®−îc sö dông m¸y tÝnh Casio f x - 570MS trë xuèng. 2. NÕu kh«ng nãi g× thªm, h·y tÝnh chÝnh x¸c ®Õn 6 ch÷ sè thËp ph©n. 3. NÕu tÝnh gãc th× tÝnh chÝnh x¸c ®Õn ®é, phót, gi©y. §Ò bµi KÕt qu¶ x1 ≈ -2,618034 x2 Bµi 1 ( 2 ®iÓm ) Cho hµm sè y = (C). y1 ≈ -4,236068 x +1 x2 ≈ -0,381966 T×m to¹ ®é tiÕp ®iÓm cña tiÕp tuyÕn víi (C) ®i qua ®iÓm A(1; -2). y2 ≈ 0,236068 xA ≈ 1,563771 2x − 3 Bµi 2 ( 2 ®iÓm ) Cho hµm sè y = (C). T×m to¹ ®é hai ®iÓm A, B yA ≈ 0,850443 x −1 xB ≈ 0,436229 thuéc hai nh¸nh kh¸c nhau cña (C) sao cho ®é dµi ®o¹n AB ng¾n nhÊt. yB ≈ 1,977984 Bµi 3 ( 2 ®iÓm ) Cho P(x) = x4 + ax3 + bx2 + cx + d. BiÕt P(1) = -1807, P(2) = -14893, P(2008) = -8086401493, P(2010) = 8130602003. = 9992009 H·y tÝnh: P(2009) ? Bµi 4 ( 2 ®iÓm ) T×m nghiÖm x ∈ (0; π ) cña ph−¬ng tr×nh: ...
Nội dung trích xuất từ tài liệu:
Đề thi chọn đội tuyển học sinh giỏi lớp 12 môn Giải toán bằng máy tính Casio (Vòng 2) - THPT Hàm Rồng (Thanh Hóa) së gi¸o dôc vµ ®µo t¹o thanh ho¸ ®Ò thi chän ®éi tuyÓn häc sinh giái líp 12 Tr−êng thpt hµm rång M«n: Gi¶i to¸n b»ng m¸y tÝnh Casio - Vßng 2. ................................. Thêi gian lµm bµi: 120 phót Ngµy thi: 03 / 12 / 2009Chó ý : 1. ThÝ sinh chØ ®−îc sö dông m¸y tÝnh Casio f x - 570MS trë xuèng. 2. NÕu kh«ng nãi g× thªm, h·y tÝnh chÝnh x¸c ®Õn 6 ch÷ sè thËp ph©n. 3. NÕu tÝnh gãc th× tÝnh chÝnh x¸c ®Õn ®é, phót, gi©y. §Ò bµi KÕt qu¶ x2 Bµi 1 ( 2 ®iÓm ) Cho hµm sè y = (C). x +1 T×m to¹ ®é tiÕp ®iÓm cña tiÕp tuyÕn víi (C) ®i qua ®iÓm A(1; -2). 2x − 3 Bµi 2 ( 2 ®iÓm ) Cho hµm sè y = (C). T×m to¹ ®é hai ®iÓm A, B x −1 thuéc hai nh¸nh kh¸c nhau cña (C) sao cho ®é dµi ®o¹n AB ng¾n nhÊt. Bµi 3 ( 2 ®iÓm ) Cho P(x) = x4 + ax3 + bx2 + cx + d. BiÕt P(1) = -1807, P(2) = -14893, P(2008) = -8086401493, P(2010) = 8130602003. H·y tÝnh: P(2009) ? Bµi 4 ( 2 ®iÓm ) T×m nghiÖm x ∈ (0; π ) cña ph−¬ng tr×nh: 1 2 48 − − (1 + cot 2 x. cot x ) = 0 cos x sin 2 x 4 Bµi 5 ( 2 ®iÓm ) Cho a > 0, b > 0 vµ a + b = 1. T×m gi¸ trÞ lín nhÊt, nhá nhÊt cña biÓu thøc F = a12 + b12. 10 2 3 4 Bµi 6 ( 2 ®iÓm ) Cho P( x) = 1 + x− x . 2 3 TÝnh tæng tÊt c¶ c¸c hÖ sè cña c¸c sè h¹ng trong khai triÓn cña P(x). Bµi 7 ( 2 ®iÓm ) Cã 15 häc sinh giái líp A, 12 häc sinh giái líp B, 9 häc sinh giái líp C. TÝnh x¸c suÊt ®Ó chän ®−îc 10 em dù thi HSG tØnh cã ®ñ häc sinh 3 líp trªn biÕt kh¶ n¨ng cña c¸c em lµ nh− nhau. Bµi 8 ( 2 ®iÓm ) Cho ABC. Trªn c¹nh AC lÊy ®iÓm D sao cho AD = 3DC. biÕt gãc A b»ng 400 vµ gãc ∠ BDC = 650. TÝnh sè ®o cña gãc BCA. Bµi 9 ( 2 ®iÓm ) Cho tø diÖn ABCD biÕt: AB = 10, BC = 11, CA = 12, DA = DB = DC = 9. TÝnh thÓ tÝch tø diÖn ABCD. x+x 3 Bµi 10 ( 2 ®iÓm) Cho hµm sè f ( x) = . x2 + 3 TÝnh tæng: S = f (cot 2 1) + f (cot 2 2) + f (cot 2 3) + ... + f (cot 2 99) + f (cot 2 100) së gi¸o dôc vµ ®µo t¹o thanh ho¸ §¸p ¸n ®Ò thi chän ®éi tuyÓn häc sinh giái 12 Tr−êng thpt hµm rång M«n: Gi¶i to¸n b»ng m¸y tÝnh Casio - Vßng 2. ................................. Thêi gian lµm bµi: 120 phót Ngµy thi: 03 / 12 / 2009Chó ý : 1. ThÝ sinh chØ ®−îc sö dông m¸y tÝnh Casio f x - 570MS trë xuèng. 2. NÕu kh«ng nãi g× thªm, h·y tÝnh chÝnh x¸c ®Õn 6 ch÷ sè thËp ph©n. 3. NÕu tÝnh gãc th× tÝnh chÝnh x¸c ®Õn ®é, phót, gi©y. §Ò bµi KÕt qu¶ x1 ≈ -2,618034 x2 Bµi 1 ( 2 ®iÓm ) Cho hµm sè y = (C). y1 ≈ -4,236068 x +1 x2 ≈ -0,381966 T×m to¹ ®é tiÕp ®iÓm cña tiÕp tuyÕn víi (C) ®i qua ®iÓm A(1; -2). y2 ≈ 0,236068 xA ≈ 1,563771 2x − 3 Bµi 2 ( 2 ®iÓm ) Cho hµm sè y = (C). T×m to¹ ®é hai ®iÓm A, B yA ≈ 0,850443 x −1 xB ≈ 0,436229 thuéc hai nh¸nh kh¸c nhau cña (C) sao cho ®é dµi ®o¹n AB ng¾n nhÊt. yB ≈ 1,977984 Bµi 3 ( 2 ®iÓm ) Cho P(x) = x4 + ax3 + bx2 + cx + d. BiÕt P(1) = -1807, P(2) = -14893, P(2008) = -8086401493, P(2010) = 8130602003. = 9992009 H·y tÝnh: P(2009) ? Bµi 4 ( 2 ®iÓm ) T×m nghiÖm x ∈ (0; π ) cña ph−¬ng tr×nh: ...
Tìm kiếm theo từ khóa liên quan:
toánĐề thi chọn học sinh giỏi lớp 12 Giải toán bằng máy tính Casio Đề thi Giải toán bằng máy tính Casio Đề thi chọn học sinh giỏi toán Đề thi học sinh giỏi lớp 12 Đề thi học sinh giỏiGợi ý tài liệu liên quan:
-
8 trang 388 0 0
-
7 trang 349 0 0
-
Bộ đề thi học sinh giỏi môn Lịch sử lớp 12 cấp tỉnh năm 2020-2021 có đáp án
26 trang 346 0 0 -
Đề thi học sinh giỏi môn GDCD lớp 12 năm 2023-2024 có đáp án - Trường THPT Mai Anh Tuấn, Thanh Hóa
28 trang 305 0 0 -
8 trang 305 0 0
-
Ebook Bồi dưỡng học sinh giỏi Tiếng Anh lớp 5 theo chuyên đề
138 trang 272 0 0 -
Đề thi học sinh giỏi môn Ngữ văn lớp 6 năm 2022-2023 có đáp án - Trường THCS Ninh An
8 trang 257 0 0 -
8 trang 242 0 0
-
Đề thi học sinh giỏi môn Ngữ văn lớp 8 năm 2021-2022 có đáp án - Phòng GD&ĐT Châu Đức
4 trang 240 0 0 -
Đề thi học sinh giỏi cấp tỉnh môn Vật lý THPT năm 2023-2024 có đáp án - Sở GD&ĐT Vĩnh Long
6 trang 235 0 0