Đề thi học kì 2 môn Toán lớp 11 năm 2021-2022 - Trường THPT Thủ Đức
Số trang: 8
Loại file: doc
Dung lượng: 898.50 KB
Lượt xem: 8
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Luyện tập với "Đề thi học kì 2 môn Toán lớp 11 năm 2021-2022 - Trường THPT Thủ Đức" nhằm đánh giá sự hiểu biết và năng lực tiếp thu kiến thức của học sinh thông qua các câu hỏi đề thi. Để củng cố kiến thức và rèn luyện khả năng giải đề thi chính xác, mời quý thầy cô và các bạn cùng tham khảo tại đây.
Nội dung trích xuất từ tài liệu:
Đề thi học kì 2 môn Toán lớp 11 năm 2021-2022 - Trường THPT Thủ Đức ĐỀÔNTẬPKIỂMTRAHỌCKÌIITOÁN11–NĂMHỌC20212022 ĐỀ01Câu1. Tính: a) lim 9 x + 1 − 4 x + 2 x ( ) 2 2 b) lim 4x2 − 4x + 3 + x x − x +1 x − x3 − x 2 − x + 1 2− x−3 c) lim d) lim x 1 x 2 − 3x + 2 x 7 x−7 x3 + x + 2 khix −1 x 3 + 1Câu2. Xéttínhliêntụccủahàmsố f ( x ) = tạiđiểm x0 = −1 . 4 khix = −1 3Câu3. Tínhđạohàmcủacáchàmsốsau: 1 a) y = ( m + 1) x 3 − 2m 2 x 2 + ( 5m + 1) x − m 2 ( m làthamsố) 3 sin 2 x � π� b) y = c) y = 4 x 2 − 5 x + 6 d) y = sin �−10 x + �+ cot 2 6 x 4 − 2x � 7� 2− xCâu4. a)Chohàmsố y = cóđồthịlà ( C ) .Viếtphươngtrìnhtiếptuyếncủađồthị ( C ) ,biết x+3 tiếptuyếnvuônggoć vớiđườngthẳng d : y = 5 x − 6 . b)Chohàmsố f ( x ) cóđồthị ( C ) nhưhìnhvẽbêndưới, d và d làhaitiếptuyếncủa ( C) . Dựavàohìnhvẽhãytìm f ( 0 ) , f ( 3) . ( ) ( ) 3 c)Chohàmsố y = x + x 2 + 1 .Chứngminh 1 + x y + xy − 9 y = 0 . 2 Mộtchấtđiểmchuyểnđộngthẳngxácđịnhbởiphươngtrình s ( t ) = t − 3t − 5t + 1 ,trongđó 3 2Câu5. t đượctínhbằnggiâyvà s đượctínhbằngmét. a)Tínhvậntốccủachấtđiểmtạithờiđiểm t = 4s . b)Tínhgiatốccủachấtđiểmtạithờiđiểmvậntốcbằng 4m / s .Câu 6. Chohìnhchóp S . ABCD cóđáy ABCD làhìnhvuôngcạnh a tâm O . SA vuônggócvớimặt phẳng ( ABCD ) , SA = a 6 . a)Chứngminh BD ⊥ ( SAC ) , ( SCD ) ⊥ ( SAD ) . b)Tínhgócgiữađườngthẳng SC vàmặtphẳng ( ABCD ) . c)Tínhgócgiữahaimặtphẳng ( SCD ) và ( ABCD ) . d)Gọi H làhìnhchiếucủa A trên SB .Tínhkhoảngcáchtừ B đến ( ADH ) . ĐỀ02Câu1. Tínhcácgiớihạnsau: x3 − 5 x 2 + 3x + 9 a) lim 9 x + 5 x + 8 x − 2 2 b) lim x − 5x − 7 x 3 x4 − 8x2 − 9 x −1 x + 1 + 10 c) lim d) lim+ x 1 x+3−2 x 1 x −1 x−2 khi x > 2Câu2. Tìm m đểhàmsố f ( x ) = 3 − x + 7 liêntụctạiđiểm x0 = 2 . 3 x − m khi x 2 2Câu3. Tínhđạohàmcủacáchàmsố x +1 a) y = b) y = x 2 − 6mx + m 2 − 4m ( m làthamsố) x−2 c) y = ( x + 1) cos ( 3 x − 2022 ) d) y = sin 5 x + tan ( 2 x − 1) 2Câu4. a)Chohàmsố y = 2 x 2 + 4 x − 1 cóđồ thị ( C ) .Viếtphươngtrìnhtiếptuyến d củađồ thị ( C ) biếtrằngtiếptuyến d songsongvớiđườngthẳng y = 3x + 8 . b)Chohàmsố y = 2 x − x 2 với x thỏađiềukiệnxácđịnh.Chứngminhrằng y 3 . y + 1 = 0 .Câu5. Chohàmsố y = f ( x ) cóđồ thị ( C ) như hìnhvẽ bêndưới, d và d làhaitiếptuyếncủa ( C) . a)Dựavàohìnhvẽ,hãytìm f ( −1) , f ( 2 ) . b)Đặt g ( x ) = 3 f ( x ) + 1 . Tính g ( −1) . 2 Mộtchấtđiểmchuyểnđộngthẳngxácđịnhbởiphươngtrình s ( t ) = t − 3t − 9t + 2 trongđó 3 2Câu6. t đượctínhbằnggiây ( s ) và s ( t ) đượctínhbằngmét ( m ) . a)Tạithờiđiểmnàochấtđiểmcóvậntốcbằng 0 ( m / s ) ? b)Tínhgiatốccủachấtđiểmtạithờiđiểm t = 5s .Câu7. Chohìnhchóp S . ABCD cóđáy ABCD làhìnhvuông,gọi H làtrungđiểmcủa AB .Biết SH vuônggócvới ( ABCD ) , AB = 2a và SB = 2a . a)Chứngminh ∆ABC đềuvà ( SBC ) ⊥ ( SAB ) . b)Tínhgócgiữađườngthẳng SC vớimặtphẳng ( ABCD ) . c)Tínhgócgiữahaimặtphẳng ( SCD ) và ( ABCD ) . d)Gọi G làtrọngtâm ∆ABC .Tínhkhoảngcáchtừđiểm G ...
Nội dung trích xuất từ tài liệu:
Đề thi học kì 2 môn Toán lớp 11 năm 2021-2022 - Trường THPT Thủ Đức ĐỀÔNTẬPKIỂMTRAHỌCKÌIITOÁN11–NĂMHỌC20212022 ĐỀ01Câu1. Tính: a) lim 9 x + 1 − 4 x + 2 x ( ) 2 2 b) lim 4x2 − 4x + 3 + x x − x +1 x − x3 − x 2 − x + 1 2− x−3 c) lim d) lim x 1 x 2 − 3x + 2 x 7 x−7 x3 + x + 2 khix −1 x 3 + 1Câu2. Xéttínhliêntụccủahàmsố f ( x ) = tạiđiểm x0 = −1 . 4 khix = −1 3Câu3. Tínhđạohàmcủacáchàmsốsau: 1 a) y = ( m + 1) x 3 − 2m 2 x 2 + ( 5m + 1) x − m 2 ( m làthamsố) 3 sin 2 x � π� b) y = c) y = 4 x 2 − 5 x + 6 d) y = sin �−10 x + �+ cot 2 6 x 4 − 2x � 7� 2− xCâu4. a)Chohàmsố y = cóđồthịlà ( C ) .Viếtphươngtrìnhtiếptuyếncủađồthị ( C ) ,biết x+3 tiếptuyếnvuônggoć vớiđườngthẳng d : y = 5 x − 6 . b)Chohàmsố f ( x ) cóđồthị ( C ) nhưhìnhvẽbêndưới, d và d làhaitiếptuyếncủa ( C) . Dựavàohìnhvẽhãytìm f ( 0 ) , f ( 3) . ( ) ( ) 3 c)Chohàmsố y = x + x 2 + 1 .Chứngminh 1 + x y + xy − 9 y = 0 . 2 Mộtchấtđiểmchuyểnđộngthẳngxácđịnhbởiphươngtrình s ( t ) = t − 3t − 5t + 1 ,trongđó 3 2Câu5. t đượctínhbằnggiâyvà s đượctínhbằngmét. a)Tínhvậntốccủachấtđiểmtạithờiđiểm t = 4s . b)Tínhgiatốccủachấtđiểmtạithờiđiểmvậntốcbằng 4m / s .Câu 6. Chohìnhchóp S . ABCD cóđáy ABCD làhìnhvuôngcạnh a tâm O . SA vuônggócvớimặt phẳng ( ABCD ) , SA = a 6 . a)Chứngminh BD ⊥ ( SAC ) , ( SCD ) ⊥ ( SAD ) . b)Tínhgócgiữađườngthẳng SC vàmặtphẳng ( ABCD ) . c)Tínhgócgiữahaimặtphẳng ( SCD ) và ( ABCD ) . d)Gọi H làhìnhchiếucủa A trên SB .Tínhkhoảngcáchtừ B đến ( ADH ) . ĐỀ02Câu1. Tínhcácgiớihạnsau: x3 − 5 x 2 + 3x + 9 a) lim 9 x + 5 x + 8 x − 2 2 b) lim x − 5x − 7 x 3 x4 − 8x2 − 9 x −1 x + 1 + 10 c) lim d) lim+ x 1 x+3−2 x 1 x −1 x−2 khi x > 2Câu2. Tìm m đểhàmsố f ( x ) = 3 − x + 7 liêntụctạiđiểm x0 = 2 . 3 x − m khi x 2 2Câu3. Tínhđạohàmcủacáchàmsố x +1 a) y = b) y = x 2 − 6mx + m 2 − 4m ( m làthamsố) x−2 c) y = ( x + 1) cos ( 3 x − 2022 ) d) y = sin 5 x + tan ( 2 x − 1) 2Câu4. a)Chohàmsố y = 2 x 2 + 4 x − 1 cóđồ thị ( C ) .Viếtphươngtrìnhtiếptuyến d củađồ thị ( C ) biếtrằngtiếptuyến d songsongvớiđườngthẳng y = 3x + 8 . b)Chohàmsố y = 2 x − x 2 với x thỏađiềukiệnxácđịnh.Chứngminhrằng y 3 . y + 1 = 0 .Câu5. Chohàmsố y = f ( x ) cóđồ thị ( C ) như hìnhvẽ bêndưới, d và d làhaitiếptuyếncủa ( C) . a)Dựavàohìnhvẽ,hãytìm f ( −1) , f ( 2 ) . b)Đặt g ( x ) = 3 f ( x ) + 1 . Tính g ( −1) . 2 Mộtchấtđiểmchuyểnđộngthẳngxácđịnhbởiphươngtrình s ( t ) = t − 3t − 9t + 2 trongđó 3 2Câu6. t đượctínhbằnggiây ( s ) và s ( t ) đượctínhbằngmét ( m ) . a)Tạithờiđiểmnàochấtđiểmcóvậntốcbằng 0 ( m / s ) ? b)Tínhgiatốccủachấtđiểmtạithờiđiểm t = 5s .Câu7. Chohìnhchóp S . ABCD cóđáy ABCD làhìnhvuông,gọi H làtrungđiểmcủa AB .Biết SH vuônggócvới ( ABCD ) , AB = 2a và SB = 2a . a)Chứngminh ∆ABC đềuvà ( SBC ) ⊥ ( SAB ) . b)Tínhgócgiữađườngthẳng SC vớimặtphẳng ( ABCD ) . c)Tínhgócgiữahaimặtphẳng ( SCD ) và ( ABCD ) . d)Gọi G làtrọngtâm ∆ABC .Tínhkhoảngcáchtừđiểm G ...
Tìm kiếm theo từ khóa liên quan:
Đề thi học kì 2 Đề thi học kì 2 lớp 11 Đề thi Toán lớp 11 Trắc nghiệm Toán lớp 11 Giải bất phương trình Xét tính liên tục của hàm số Tính đạo hàm của các hàm sốGợi ý tài liệu liên quan:
-
Đề thi học kì 2 môn Tiếng Anh lớp 7 năm 2022-2023 có đáp án - Trường THCS Đỗ Đăng Tuyển
2 trang 276 0 0 -
Đề thi học kì 2 môn Tiếng Anh lớp 6 năm 2022-2023 có đáp án - Trường THCS Đỗ Đăng Tuyển
2 trang 271 1 0 -
Đề thi học kì 2 môn Toán lớp 6 năm 2022-2023 có đáp án - Trường THCS Phan Bội Châu, Hiệp Đức
22 trang 246 0 0 -
Bộ 14 đề thi học kì 2 môn Toán lớp 9 năm 2022-2023 có đáp án
82 trang 187 0 0 -
4 trang 179 1 0
-
Đề thi học kì 2 môn Công nghệ lớp 6 năm 2022-2023 có đáp án - Trường THCS Phan Bội Châu, Hiệp Đức
8 trang 167 0 0 -
Đề thi học kì 2 môn HĐTN lớp 6 năm 2022-2023 có đáp án - Trường THCS Phan Bội Châu, Hiệp Đức
5 trang 159 0 0 -
Đề thi học kì 2 môn Tin học lớp 6 năm 2022-2023 có đáp án - Trường THCS Phan Bội Châu, Hiệp Đức
13 trang 151 0 0 -
25 trang 150 0 0
-
Đề thi học kì 2 môn Ngữ văn lớp 7 năm 2022-2023 có đáp án - Trường THCS Trần Hưng Đạo, Kon Tum
9 trang 130 0 0