Danh mục

Đề thi học sing giỏi môn Toán tỉnh Nam Định

Số trang: 2      Loại file: doc      Dung lượng: 44.50 KB      Lượt xem: 11      Lượt tải: 0    
Jamona

Phí tải xuống: 2,000 VND Tải xuống file đầy đủ (2 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tài liệu tham khảo về Đề thi học sing giỏi môn Toán tỉnh Nam Định
Nội dung trích xuất từ tài liệu:
Đề thi học sing giỏi môn Toán tỉnh Nam ĐịnhToán học, Học sinh giỏi tỉnh Nam Định, Lớp 11, 2004Bài từ Thư viện Khoa học VLOS. ĐỀ THI CHỌN HỌC SINH GIỎI TOÀN TỈNH NAM ĐỊNH Trường học Trung học phổ thông Lớp học 11 Năm học 2004 Môn thi Toán học Thời gian 150 phút Thang điểm 20Câu I (6 điểm). Cho phương trình sau: 1) Giải phương trình khi . 2) Xác định tham số m để phương trình có đúng một nghiệmCâu II (4 điểm) Trên mặt phẳng cho tứ giác lồi ABCD có AB = BC = CD = a. 1) Nếu biết Hãy tính diện tích tứ giác ABCD theo a. 2) Giả sử tứ giác ABCD thay đổi, mà AB = BC = CD = a không đổi. Hãy tìm giá trị lớn nhất của diện tích tứ giác ABCD.Câu III (7 điểm) Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a. 1) Ta coi hình chóp đã cho là tứ diện SABC có trọng tâm O, gọi là góc giữa mp(SAB) và mp(ABC). Hãy tính để O cách đều tất cả các mặt của SABC. 2) Biết Xét mặt phẳng (P) thay đổi đi qua A, sao cho mp(P) cắt các đoạn thẳng SB, SC thứ tự tại B, C. Tìm giá trị nhỏ nhất của chu vi tam giác ABC theo a.Câu IV (3 điểm). Cho phương trình: Chứng minh rằng phương trình có 3 nghiệm phân biệt x1, x2, x3. Giả sử x1 < x2 < x3, chứng minh rằng: và

Tài liệu được xem nhiều:

Gợi ý tài liệu liên quan: