Danh mục

Đề thi học sinh giỏi cấp tỉnh Toán 12 - Kèm đáp án

Số trang: 36      Loại file: pdf      Dung lượng: 4.21 MB      Lượt xem: 16      Lượt tải: 0    
10.10.2023

Xem trước 4 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Kì thi học sinh giỏi là kì thi quan trọng đối với mỗi học sinh. Dưới đây là đề thi học sinh giỏi môn Toán lớp 12 cấp tỉnh giúp các em kiểm tra lại đánh giá kiến thức của mình và có thêm thời gian chuẩn bị ôn tập cho kì thi sắp tới được tốt hơn.
Nội dung trích xuất từ tài liệu:
Đề thi học sinh giỏi cấp tỉnh Toán 12 - Kèm đáp ánSỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI CHỌN HỌC SINH GIỎI CẤP TỈNH VĨNH PHÚC LỚP 12 THPT NĂM HỌC 2012-2013 Môn: TOÁN – THPT chuyên. ĐỀ THI CHÍNH THỨC Thời gian: 180 phút, không kể thời gian giao đề. Ngày thi: 02/11/2012.  2 8  x + 3x + 2 = y − 5 y − 1   8Câu 1 (2,5 điểm). Giải hệ phương trình  y 2 + 3 y + 2 = − 5 z − 1 ( x, y , z ∈ ℝ )  z  2 8  z + 3z + 2 = x − 5 x − 1 Câu 2 (1,5 điểm). Cho a, b, c, d là các số thực dương. Chứng minh rằng 3a bc 2b3d 25 2. + 3. 3 + 4. 4 ≤ a+b+c ( a + b )( a + b + c + d ) 81( a + b ) ( a + b + c + d ) 6 3Câu 3 (2,0 điểm). Giả sử n là một số nguyên dương sao cho 3n + 2n chia hết cho 7 . Tìm sốdư của 2n + 11n + 2012n khi chia cho 7 . 2Câu 4 (3,0 điểm). Cho hình bình hành ABCD. Gọi P là điểm sao cho trung trực của đoạnthẳng CP chia đôi đoạn AD và trung trực của đoạn AP chia đôi đoạn CD. Gọi Q là trungđiểm của đoạn thẳng BP. a) Chứng minh rằng đường thẳng BP vuông góc với đường thẳng AC. b) Chứng minh rằng BP = 4.OE , trong đó E là trung điểm của AC và O là tâmđường tròn ngoại tiếp tam giác AQC .Câu 5 (1,0 điểm). Cho m, n ( m > n > 4 ) là các số nguyên dương và A là một tập hợp con cóđúng n phần tử c ủa tập hợ p S = {1, 2,3,..., m} . Chứng minh rằng n ếum > ( n − 1) (1 + Cn + Cn + Cn ) thì ta luôn chọn được n phần tử đôi một phân biệt 2 3 4x1 , x2 ,..., xn ∈ S sao cho các tập hợp Ai = {x + y + xi x ∈ A, y ∈ A}, i = 1, n thỏa mãnAj ∩ Ak = ∅ với mọi j ≠ k và j , k = 1, n . -----------------Hết----------------- - Thí sinh không được sử dụng máy tính cầm tay. - Giám thị không giải thích gì thêm. Họ và tên thí sinh: ………………………………………………….Số báo danh……………..SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI CHỌN HỌC SINH GIỎI CẤP TỈNH VĨNH PHÚC LỚP 12 THPT NĂM HỌC 2012-2013 Môn: TOÁN – THPT chuyên HƯỚNG DẪN CHẤM (Gồm 04 trang) Lưu ý khi chấm bài:-Đáp án chỉ trình bày một cách giải bao gồm các ý bắt buộc phải có trong bài làmcủa học sinh. Khi chấm nếu học sinh bỏ qua bước nào thì không cho điểm bước đó.-Nếu học sinh giải cách khác, giám khảo căn cứ các ý trong đáp án để cho điểm.-Trong bài làm, nếu ở một bước nào đó bị sai thì các phần sau có sử dụng kết quả saiđó không được điểm.-Học sinh được sử dụng kết quả phần trước để làm phần sau.-Trong lời giải câu 4 nếu học sinh không vẽ hình hoặc vẽ sai hình không cho điểm.-Điểm toàn bài tính đến 0,25 và không làm tròn.Câu 1. (2,5 điểm) Nội dung 1 8Điều kiện: x, y, z ≥ . Xét các hàm số f (t ) = t 2 + 3t + 2, g (t ) = − 5t − 1 . Khi đó ta có 5 t 8 5 1f (t ) = 2t + 3 > 0, g (t ) = − − < 0, ∀t > . 2 5t − 1 2 t 5 1  1 Mà f (t ) , g (t ) là các hàm số liên tục trên  ; + ∞  suy ra f (t ) đồng biến trên  ; + ∞  5  5  1 và g (t ) nghịch biến trên  ; + ∞  . Không mất tính tổng quát ta giả sử x = min {x, y, z} . 5 Khi đó ta có:Nếu x < y ⇒ g ( x ) > g ( y ) ⇒ f ( z ) > f ( x ) ⇒ z > x ⇒ g ( z ) < g ( x ) ⇒ f ( y ) < f ( z ) suyra y < z ⇒ g ( y ) > g ( z ) ⇒ f ( x ) > f ( y ) ⇒ x > y , vô lí vì x < y .Do vậy x = y , tương tự lí luận như trên ta được x ...

Tài liệu được xem nhiều:

Gợi ý tài liệu liên quan: