Danh mục

Đề thi học sinh giỏi môn Toán lớp 10 cấp trường năm 2019-2020 có đáp án - Trường THPT Triệu Sơn 4, Thanh Hóa

Số trang: 6      Loại file: pdf      Dung lượng: 443.70 KB      Lượt xem: 10      Lượt tải: 0    
tailieu_vip

Phí tải xuống: 1,000 VND Tải xuống file đầy đủ (6 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Đề thi học sinh giỏi môn Toán lớp 10 cấp trường năm 2019-2020 có đáp án - Trường THPT Triệu Sơn 4, Thanh Hóa chia sẻ dưới đây giúp học sinh có thêm tư liệu luyện tập và so sánh kết quả, cũng như tự đánh giá được năng lực bản thân.
Nội dung trích xuất từ tài liệu:
Đề thi học sinh giỏi môn Toán lớp 10 cấp trường năm 2019-2020 có đáp án - Trường THPT Triệu Sơn 4, Thanh Hóa SỞ GD&ĐT THANH HÓA ĐỀ THI CHỌN ĐỘI DỰ TUYỂN HSG CẤP TRƯỜNG TRƯỜNG THPT TRIỆU SƠN 4 NĂM HỌC 2019-2020. Môn thi: Toán, Lớp 10 ĐỀ CHÍNH THỨC Ngày thi: 22 tháng 3 năm 2020. Thời gian làm bài: 150 phút (không kể thời gian giao đề). Đề thi này có 05 câu, gồm 01 trangCâu I. (4 điểm) Cho hàm số: y  x2  2  m  1 x  m2  4m  2 (1) 1. Lập bảng biến thiên và vẽ đồ thị hàm số (1) khi m  1 . 2. Tìm tất cả các giá trị của tham số m sao cho đồ thị hàm số (1) cắt đường thẳng y  x  3 tại hai điểm phân biệt A, B sao cho A và B nằm ở hai phía trục tung.Câu II. (4 điểm) 1. Giải phương trình: x 2  6 x  8  2 x 2  6 x   7x  y  2x  y  5 2. Giải hệ phương trình:   x  y  2 x  y  1. Câu III. (4 điểm) x5 1. Giải bất phương trình: 1 1 x 2. Tìm tất cả các giá trị của tham số m để bất phương trình sau có nghiệm:  x 2  6 xy  10 y 2  m2  5m  8  x  2 y  2Câu IV. (6 điểm) 1 1 2 1. Cho hình vuông ABCD; E, F, I là các điểm xác định bởi BE  BC , CF   CD , BI  BF . 3 2 5 Chứng minh rằng A, E, I thẳng hàng và góc AIC  900 . 2. Tam giác ABC có các cạnh AB  2 , AC  3 và BAC  1200 . Tính diện tích và bán kính đường tròn ngoại tiếp tam giác ABC. 3. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC vuông tại B có M  2;1 là trung điểm cạnh huyền AC, điểm B  0; 3  . Tìm tọa độ điểm C biết điểm A thuộc đường thẳng d : 2 x  3 y  5  0 và điểm C có hoành độ dương. Câu V. (2 điểm) Cho x, y, z là các số thực dương thỏa mãn điều kiện x2  y 2  z 2  xy  yz  zx  6 . Tìm giá trị nhỏnhất của biểu thức: x3 y 3 z 3 54 P 2  2  2  y z x 6  xy  yz  zx -------------- HẾT ------------- SỞ GD&ĐT THANH HÓA ĐỀ THI CHỌN ĐỘI DỰ TUYỂN HSG CẤP TRƯỜNG TRƯỜNG THPT TRIỆU SƠN 4 NĂM HỌC 2019-2020. Môn thi: Toán, Lớp 10 ĐỀ CHÍNH THỨC Ngày thi: 22 tháng 3 năm 2020. Thời gian làm bài: 150 phút (không kể thời gian giao đề). Đề thi này có 05 câu, gồm 01 trangCâu Ý Nội dung Điểm I. 1. Lập bảng biến thiên và vẽ đồ thị... 2,00(4.0) Khi m  1, hàm số đã cho trở thành: y  x2  4 x  3 0,25 Tập xác định: D=R . Ta có  b  2a  2 0,25      1  4a x  2    0,50 y 1 Hàm số nghịch biến trên khoảng  ; 2  ;đồng biến trên  2;   0,50 Đồ thị hàm số là parabol có bề lõm quay lên trên và tọa độ đỉnh I  2; 1 Đồ thị: Đồ thị cắt trục hoành tại hai điểm có hoành độ 1 và 3. Đồ thị cắt trục tung tại điểm có tung độ 3. 0,50 2. Tìm các giá trị của m... 2,00 Phương trình hoành độ giao điểm của đồ thị hàm số (1) ...

Tài liệu được xem nhiều:

Gợi ý tài liệu liên quan: