Đề thi học sinh giỏi môn Toán lớp 12 cấp thành phố năm 2020-2021 - Sở GD&ĐT Hà Nội
Thông tin tài liệu:
Nội dung trích xuất từ tài liệu:
Đề thi học sinh giỏi môn Toán lớp 12 cấp thành phố năm 2020-2021 - Sở GD&ĐT Hà Nội ĐỀ THI CHỌN ĐT HSG QUỐC GIA TP HÀ NỘI NĂM HỌC 2020-2021 Phan Phương Đức - Nguyễn Tiến DũngA. NGÀY THỨ NHẤT (19/10/2020) un √Bài 1. Cho dãy số (un ) xác định bởi u1 = 1 và un+1 = , ∀n ≥ 1. Tìm giới hạn lim n u . n 2n un + 3Bài 2. Cho đa thức P (x) = (x − a1 ) (x − a2 ) · · · (x − a9 ) − 3, trong đó a1 , a2 , · · · , a9 là các số nguyên đôimột khác nhau. Chứng minh P (x) không phân tích được thành tích của hai đa thức với hệ số nguyên có bậclớn hơn hoặc bằng 1.Bài 3. Cho tam giác ABC cân tại A (∠BAC < 90◦ ) và M là trung điểm của đoạn thẳng AB. Lấy điểm Nthuộc đoạn thẳng CM sao cho ∠CBN = ∠ACM . a) Chứng minh đường tròn ngoại tiếp tam giác BCN tiếp xúc với đường tròn ngoại tiếp tam giác AM N . b) Đoạn thẳng AC cắt đường tròn ngoại tiếp tam giác AM N tại điểm thứ hai là P . Gọi I là trung điểm của đoạn thẳng BC. Chứng minh đường thẳng N P đi qua trung điểm của đoạn thẳng M I.Bài 4. Tìm số bộ nguyên dương (a1 , a2 , · · · , a15 ) thỏa mãn đồng thời các điều kiện sau: i) 1 ≤ a1 < a2 < · · · < a15 ≤ 2020; ii) ai ≡ i2 (mod 5), ∀i = 1, 2, · · · , 15.B. NGÀY THỨ HAI (20/10/2020)Bài 5. Tìm tất cả các hàm số f : R → R thỏa mãn f (4xf (x) + f (y)) = 4 (f (x))2 + y, ∀x, y ∈ R.Bài 6. Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Các đường cao AD, BE và CF củatam giác ABC đồng quy tại H. Đường thẳng EF cắt đường thẳng BC tại điểm S. Qua S kẻ các tiếp tuyếnSX, SY tới đường tròn (O), với X, Y là các tiếp điểm. a) Chứng minh D, X, Y thẳng hàng. b) Gọi I là giao điểm của hai đường thẳng XY và EF . Chứng minh đường thẳng IH đi qua trung điểm của đoạn thẳng BC.Bài 7. Cho p là một số nguyên tố lớn hơn 3. p−1 X 2 a) Chứng minh Cpi ≡ 0 (mod p3 ). i=1 p b) Cho n là một số nguyên dương thỏa mãn n ≡ 1 (mod p). Chứng minh Cnp ≡ n (mod p4 ).Trang 1 Đề thi chọn ĐT HSG Quốc gia TP Hà Nội năm học 2020-2021C. HƯỚNG DẪN GIẢI un √Bài 1. Cho dãy số (un ) xác định bởi u1 = 1 và un+1 = , ∀n ≥ 1. Tìm giới hạn lim n u . n 2n un + 3Lời giải:Từ giả thiết, dễ chứng minh bằng quy nạp: un 6= 0, ∀n ∈ N∗ . 1 3Khi đó, ta có: = 2n + un+1 un 1 n+1 1 n n 1⇒ +2 =3 + 2 = ··· = 3 + 2 = 3n+1 un+1 un u1 1 1⇒ = 3n − 2n ⇒ un = n , ∀n ∈ R un 3 − 2n √ 1 1 1Khi đó, lim n un = √ = s = · n lim 3n − 2n 2 n 3 3 lim n 1 − 3Bài 2. Cho đa thức P (x) = (x − a1 ) (x − a2 ) · · · (x − a9 ) − 3, trong đó a1 , a2 , · · · , a9 là các số nguyên đôimột khác nhau. Chứng minh P (x) không phân tích được thành tích của hai đa thức với hệ số nguyên có bậclớn hơn hoặc bằng 1.Lời giải:Giả sử có thể phân tích được P (x) = F (x).G(x), với F (x), G(x) ∈ Z[x], deg F, deg G ≥ 1.KMTTQ, giả sử deg F ≤ deg G. Do deg F + deg G = deg P = 9 nên deg F ≤ 4.Từ đề bài, ta có: F (ai ).G(ai ) = 3, ∀i = 1, 9 ⇒ F (ai ) ∈ {±1; ±3}, ∀i = 1, 9. Do 1 ≤ deg F ≤ 4 nênkhông tồn tại 5 giá trị F (ai ) bằng nhau.Mặt khác, theo nguyên lí Dirichlet, tồn tại ≥ 3 giá trị F (ai ) bằng nhau. KMTTQ, giả sử F (a1 ) = F (a2 ) =F (a3 ) = a ⇒ F (x) = (x − a1 )(x − a2 )(x − a3 )Q(x) + a, (a ∈ {±1; ±3}).Khi đó, ta xét các TH sau:TH1: Nếu tồn tại i 6= j ∈ 4, 9 mà F (ai ), F (aj ) = a ± 2⇒ (ai − a1 )(ai − a2 )(ai − a3 )Q(ai ) = ±2; (aj − a1 )(aj − a2 )(aj − a3 )Q(aj ) = ±2.Do a1 6= a2 6= a3 ⇒ ai − a1 ; ai − a2 ; ai − a3 có 1 số bằng 1, 1 số bằng −1, 1 số bằng ±2.KMTTQ, giả sử ai − a1 = 1; ai − a2 = −1.Tương tự, aj − ...
Tìm kiếm theo từ khóa liên quan:
Đề thi học sinh giỏi Đề thi học sinh giỏi lớp 12 Đề thi HSG lớp 12 Đề thi học sinh giỏi năm 2020 Đề thi học sinh giỏi môn Toán 12 cấp thành phố Luyện thi HSG Toán 12 Ôn thi học sinh giỏi lớp 12 môn Toán Đề thi học sinh giỏi lớp 12 cấp thành phố Đề thi học sinh giỏi Hà NộiGợi ý tài liệu liên quan:
-
8 trang 394 0 0
-
Bộ đề thi học sinh giỏi môn Lịch sử lớp 12 cấp tỉnh năm 2020-2021 có đáp án
26 trang 362 0 0 -
7 trang 352 0 0
-
Đề thi học sinh giỏi môn GDCD lớp 12 năm 2023-2024 có đáp án - Trường THPT Mai Anh Tuấn, Thanh Hóa
28 trang 311 0 0 -
8 trang 308 0 0
-
Ebook Bồi dưỡng học sinh giỏi Tiếng Anh lớp 5 theo chuyên đề
138 trang 272 0 0 -
Đề thi học sinh giỏi môn Ngữ văn lớp 6 năm 2022-2023 có đáp án - Trường THCS Ninh An
8 trang 263 0 0 -
8 trang 249 0 0
-
Đề thi học sinh giỏi môn Ngữ văn lớp 8 năm 2021-2022 có đáp án - Phòng GD&ĐT Châu Đức
4 trang 246 0 0 -
Đề thi học sinh giỏi cấp tỉnh môn Vật lý THPT năm 2023-2024 có đáp án - Sở GD&ĐT Vĩnh Long
6 trang 236 0 0 -
16 Đề thi học sinh giỏi lớp 1 môn Tiếng Anh - Sở GD&ĐT Vĩnh Phúc
65 trang 227 0 0 -
Bộ đề thi học sinh giỏi môn Địa lí lớp 11 cấp trường năm 2020-2021
18 trang 208 0 0 -
Đề thi học sinh giỏi môn Vật lí lớp 9 năm 2014-2015 có đáp án - Sở GD&ĐT Vĩnh Phúc
5 trang 203 0 0 -
18 trang 202 0 0
-
Đề thi học sinh giỏi môn Toán lớp 12 năm 2023-2024 có đáp án - Trường THPT Mai Anh Tuấn, Thanh Hóa
9 trang 199 0 0 -
7 trang 184 0 0
-
Bộ đề thi học sinh giỏi môn Tiếng Anh lớp 8 có đáp án
39 trang 183 0 0 -
6 trang 163 0 0
-
Đề thi học sinh giỏi môn Địa lí lớp 12 năm 2023-2024 có đáp án - Trường THPT Mai Anh Tuấn, Thanh Hóa
10 trang 155 0 0 -
Đề thi học sinh giỏi môn Vật lí lớp 12 năm 2023-2024 có đáp án - Trường THPT Mai Anh Tuấn, Thanh Hóa
18 trang 145 0 0