Danh mục

Đề thi học sinh giỏi môn Toán lớp 12 cấp tỉnh năm 2019-2020 có đáp án - Sở GD&ĐT Bình Phước

Số trang: 10      Loại file: pdf      Dung lượng: 1.12 MB      Lượt xem: 14      Lượt tải: 0    
Thư Viện Số

Hỗ trợ phí lưu trữ khi tải xuống: 1,000 VND Tải xuống file đầy đủ (10 trang) 0

Báo xấu

Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Đề thi học sinh giỏi môn Toán lớp 12 cấp tỉnh năm 2019-2020 có đáp án - Sở GD&ĐT Bình Phước là tài liệu ôn thi học sinh giỏi môn Toán hữu ích, thông qua việc luyện tập với đề thi sẽ giúp các em làm quen với các dạng câu hỏi bài tập và rút kinh nghiệm trong quá trình làm bài thi. Mỗi đề thi kèm theo đáp án và hướng dẫn giải chi tiết giúp các bạn dễ dàng hơn trong việc ôn tập cũng như rèn luyện kỹ năng giải đề.
Nội dung trích xuất từ tài liệu:
Đề thi học sinh giỏi môn Toán lớp 12 cấp tỉnh năm 2019-2020 có đáp án - Sở GD&ĐT Bình Phước SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI CHỌN HỌC SINH GIỎI BÌNH PHƯỚC CẤP TỈNH LỚP 12 NĂM 2019 Môn: Toán. ĐỀ CHÍNH THỨC Thời gian làm bài: 180 phút (không kể thời gian phát đề). (Đề thi gồm có 01 trang) Ngày thi: 22/09/2019. x +1Câu 1. (4 điểm) Cho hàm = ( x) số y f= có đồ thị ( C ) . x −1 a) Khảo sát sự biến thiên và vẽ đồ thị ( C ) của hàm số y = f ( x ) . b) Tìm hai điểm A, B thuộc về hai nhánh của đồ thị ( C ) sao cho AB ngắn nhất.Câu 2. (6 điểm) a) Giải phương trình: ( sin 2 x + cos 2 x ) cos x + 2 cos 2 x − sin x = 0. 2 xy 2 − y − y 2 + 1 + 2 xy 2 4 x 2 + 1 =0 b) Giải hệ phương trình:   x − 2 2 x y= 2 x + 6 + 2 3 3 c) Có 27 tấm thẻ được đánh các số tự nhiên từ 1 đến 27 (mỗi thẻ đánh đúng một số). Rút ngẫu nhiên ba thẻ. Tính xác suất để rút được ba thẻ mà tổng các số trên ba thẻ chia hết cho 3.Câu 3. (4 điểm) a) Trong mặt phẳng với hệ trục tọa độ Oxy . Cho tam giác ABC nội tiếp đường tròn tâm I ( −2; −1) , � = 90?? , H ( −1; −3) là hình chiếu vuông góc của A lên BC và K ( −1; 2 ) là một điểm thuộc ?????? đường thẳng AC . Tìm tọa độ các đỉnh A, B, C . Biết rằng điểm A có hoành độ dương. b) Cho tam giác ABC ( AB < AC ) . Đường phân giác trong góc A cắt đường tròn ngoại tiếp tam giác ABC tại điểm D . Gọi E là giao điểm của đường trung trực của đoạn thẳng AC và đường phân giác ngoài của góc A . Gọi H là giao điểm của DE và AC . Đường thẳng qua H và vuông góc với DE cắt AE tại F . Đường thẳng qua F vuông góc với AE cắt AB tại K . Chứng minh rằng KH song song BC.Câu 4. (3 điểm) Cho hình chóp S . ABCD có đáy ABCD là hình chữ nhật biết=AB a= , BC 2a, tam giácSAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng ( ABCD ) . a) Tính thể tích khối chóp S . ACD. b) Tính khoảng cách giữa hai đường thẳng SC và BD.Câu 5. (2 điểm) Cho a, b, c là các số thực không âm thỏa ( a + b )( b + c )( a + c ) > 0 và a ≥ max {b, c} .Chứng minh rằng: a 11  b c  a + 7 ( b + c ) 15 +  +  + 2 > b+c 2  a+c a+b  a 2Câu 6. (1 điểm) Cho dãy số ( un ) xác định bởi 2019un  2019  u= 1; u= 2020; un += + 1 +  un −1 , ∀n ≥ 2 n −1  1 2 1 n  1 1 1 1Tính lim  + + + ... +  . n →+∞ u  1 u2 u3 un  ………HẾT………- Thí sinh không được sử dụng tài liệu và máy tính cầm tay- Giám thị coi thi không giải thích gì thêm. LỜI GIẢI CHI TIẾT x +1Bài 1. Cho hàm số y = f ( x ) = có đồ thị ( C ) . x −1 a) Khảo sát sự biến thiên và vẽ đồ thị ( C ) của hàm số y = f ( x ) . b) Tìm hai điểm A , B thuộc về hai nhánh của đồ thị ( C ) sao cho AB ngắn nhất. Lời giải x +1 a) y = f ( x ) = x −1 +) Tập xác định: D = ℝ {1} . −2 +) y′ = < 0 , ∀x ≠ 1 . Hàm số nghịch biến trên các khoảng ( −∞;1) và (1; +∞ ) . ( x − 1) 2 +) y′ không xác định tại x = 1 . +) lim y = 1 nên y = 1 là tiệm cận ngang của đồ thị hàm số. x →±∞ +) lim− y = −∞ ; lim+ y = +∞ nên x = 1 là tiệm cận đứng của đồ thị hàm số. x →1 x →1 +) Đồ thị  x +1  x +1  b) Giả sử A  x1; 1  ; B  x2 ; 2  , với x1 < 1 < x2 .  x1 − 1   x2 − 1  Đặt x1 = 1 − a ; x2 = 1 + b với a, b > 0 . ( x2 − x1 ) ( a + b) 2 2 ...

Tài liệu được xem nhiều:

Tài liệu liên quan: