Đề thi học sinh giỏi môn Toán lớp 12 cấp tỉnh năm 2019-2020- Sở GD&ĐT Quảng Ninh
Số trang: 8
Loại file: pdf
Dung lượng: 765.09 KB
Lượt xem: 6
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Cùng tham gia thử sức với Đề thi học sinh giỏi môn Toán lớp 12 cấp tỉnh năm 2019-2020- Sở GD&ĐT Quảng Ninh để nâng cao tư duy, rèn luyện kĩ năng giải đề và củng cố kiến thức Toán học căn bản. Chúc các em vượt qua kì thi học sinh giỏi thật dễ dàng nhé!
Nội dung trích xuất từ tài liệu:
Đề thi học sinh giỏi môn Toán lớp 12 cấp tỉnh năm 2019-2020- Sở GD&ĐT Quảng NinhSỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI CHỌN HỌC SINH GIỎI CẤP TỈNH THPT NĂM 2019 TỈNH QUẢNG NINH Môn thi: TOÁN - Bảng A Ngày thi: 03/09/2019 ĐỀ THI CHÍNH THỨC Thời gian làm bài: 180 phút (không kể thời gian phát đề) ĐỀ BÀI 2x 1Câu 1 (4 điểm). Cho hàm số y có đồ thị C . Gọi M là điểm bất kì trên C . Tiếp tuyến x 1 của C tại M cắt hai đường tiệm cận của C tại A và B . Gọi I là giao điểm của hai đường tiệm cận. Tìm trên C tất cả các điểm M sao cho chu vi tam giác IAB nhỏ nhất. x3 xy 2 y6 y 4 x3 xy 2 e e ln 0Câu 2 (3 điểm) . Giải hệ phương trình: y6 y4 . 9 y 2 3 7x 2 y 5 2 y 3 Câu 3 (4 điểm). a) Cho a log2 3;b log 3 5; c log 7 2 . Tính log280 441 theo a ,b , c . b) Có 2 nhà kho, nhà kho thứ nhất có 8 cái điều hòa tốt và 4 cái điều hòa hỏng. Nhà kho thứ hai có 9 cái điều hòa tốt và 6 cái điều hòa hỏng ( Giả thiết các điều hòa ở hai nhà kho, mỗi cái đựng trong hộp kín, nhìn bề ngoài không phân biệt được). Hùng vào mỗi nhà kho lấy ra ngẫu nhiên 2 cái điều hòa. Tính xác suất để 4 cái điều hòa Hùng lấy được có ít nhất 2 cái tốt.Câu 4 (3 điểm). Trong mặt phẳng với hệ tọa độ Oxy , cho tam giác ABC có 3 góc đều nhọn và nội tiếp đường tròn tâm I . Gọi K là hình chiếu vuông góc của B trên đường thẳng AC , H là hình chiếu vuông góc của C trên đường thẳng BI . Đương thẳng AC và KH lần lượt có phương trình x y 1 0 và x 2 y 1 0 . Biết điểm B thuộc đường thẳng y 5 0 , điểm I thuộc đường thẳng x 1 0 . Tìm tọa độ điểm C .Câu 5 (4 điểm). Cho hình chóp S . ABCD có đáy ABCD là hình thoi cạnh a , tâm O . Biết SO vuông góc với mặt phẳng ( ABCD) , SB 3a và BAD 120 . Gọi M và N lần lượt là các 2 1 điểm thuộc các cạnh BC và SA sao cho BM BC , SN SA . 3 3 a) Tính thể tích hình chóp S .MND theo a . b) Gọi là góc giữa đường thẳng MN và mặt phẳng ( SBD) . Tính cos .Câu 6 (2 điểm) . Cho các số thực a, b, c 1;4 . Tìm giá trị nhỏ nhất của biểu thức a b 2 P 2 c 4 ab bc ca -------------------- HẾT -------------------- LỜI GIẢI CHI TIẾT 2x 1Câu 1. Cho hàm số y có đồ thị C . Gọi M là điểm bất kì trên C . Tiếp tuyến của C x 1 tại M cắt hai đường tiệm cận của C tại A và B . Gọi I là giao điểm của hai đường tiệm cận. Tìm trên C tất cả các điểm M sao cho chu vi tam giác IAB nhỏ nhất. Lời giải TXĐ: D 1 1 Ta có y . x 1 2 2m 1 Ta có: M C M m; m 1 m 1 1 2m 1 Tiếp tuyến của C tại M có phương trình : y x m . m 1 2 m 1 C có đường tiệm cận đứng d1 : x 1 ; đường tiệm cận ngang d2 : y 2 . Ta có I d1 d2 I 1;2 . x 1 x 1 ...
Nội dung trích xuất từ tài liệu:
Đề thi học sinh giỏi môn Toán lớp 12 cấp tỉnh năm 2019-2020- Sở GD&ĐT Quảng NinhSỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI CHỌN HỌC SINH GIỎI CẤP TỈNH THPT NĂM 2019 TỈNH QUẢNG NINH Môn thi: TOÁN - Bảng A Ngày thi: 03/09/2019 ĐỀ THI CHÍNH THỨC Thời gian làm bài: 180 phút (không kể thời gian phát đề) ĐỀ BÀI 2x 1Câu 1 (4 điểm). Cho hàm số y có đồ thị C . Gọi M là điểm bất kì trên C . Tiếp tuyến x 1 của C tại M cắt hai đường tiệm cận của C tại A và B . Gọi I là giao điểm của hai đường tiệm cận. Tìm trên C tất cả các điểm M sao cho chu vi tam giác IAB nhỏ nhất. x3 xy 2 y6 y 4 x3 xy 2 e e ln 0Câu 2 (3 điểm) . Giải hệ phương trình: y6 y4 . 9 y 2 3 7x 2 y 5 2 y 3 Câu 3 (4 điểm). a) Cho a log2 3;b log 3 5; c log 7 2 . Tính log280 441 theo a ,b , c . b) Có 2 nhà kho, nhà kho thứ nhất có 8 cái điều hòa tốt và 4 cái điều hòa hỏng. Nhà kho thứ hai có 9 cái điều hòa tốt và 6 cái điều hòa hỏng ( Giả thiết các điều hòa ở hai nhà kho, mỗi cái đựng trong hộp kín, nhìn bề ngoài không phân biệt được). Hùng vào mỗi nhà kho lấy ra ngẫu nhiên 2 cái điều hòa. Tính xác suất để 4 cái điều hòa Hùng lấy được có ít nhất 2 cái tốt.Câu 4 (3 điểm). Trong mặt phẳng với hệ tọa độ Oxy , cho tam giác ABC có 3 góc đều nhọn và nội tiếp đường tròn tâm I . Gọi K là hình chiếu vuông góc của B trên đường thẳng AC , H là hình chiếu vuông góc của C trên đường thẳng BI . Đương thẳng AC và KH lần lượt có phương trình x y 1 0 và x 2 y 1 0 . Biết điểm B thuộc đường thẳng y 5 0 , điểm I thuộc đường thẳng x 1 0 . Tìm tọa độ điểm C .Câu 5 (4 điểm). Cho hình chóp S . ABCD có đáy ABCD là hình thoi cạnh a , tâm O . Biết SO vuông góc với mặt phẳng ( ABCD) , SB 3a và BAD 120 . Gọi M và N lần lượt là các 2 1 điểm thuộc các cạnh BC và SA sao cho BM BC , SN SA . 3 3 a) Tính thể tích hình chóp S .MND theo a . b) Gọi là góc giữa đường thẳng MN và mặt phẳng ( SBD) . Tính cos .Câu 6 (2 điểm) . Cho các số thực a, b, c 1;4 . Tìm giá trị nhỏ nhất của biểu thức a b 2 P 2 c 4 ab bc ca -------------------- HẾT -------------------- LỜI GIẢI CHI TIẾT 2x 1Câu 1. Cho hàm số y có đồ thị C . Gọi M là điểm bất kì trên C . Tiếp tuyến của C x 1 tại M cắt hai đường tiệm cận của C tại A và B . Gọi I là giao điểm của hai đường tiệm cận. Tìm trên C tất cả các điểm M sao cho chu vi tam giác IAB nhỏ nhất. Lời giải TXĐ: D 1 1 Ta có y . x 1 2 2m 1 Ta có: M C M m; m 1 m 1 1 2m 1 Tiếp tuyến của C tại M có phương trình : y x m . m 1 2 m 1 C có đường tiệm cận đứng d1 : x 1 ; đường tiệm cận ngang d2 : y 2 . Ta có I d1 d2 I 1;2 . x 1 x 1 ...
Tìm kiếm theo từ khóa liên quan:
Đề thi học sinh giỏi Đề thi học sinh giỏi lớp 12 Đề thi HSG lớp 12 Đề thi học sinh giỏi năm 2020 Đề thi học sinh giỏi môn Toán 12 cấp tỉnh Luyện thi HSG Toán 12 Ôn thi học sinh giỏi lớp 12 môn Toán Đề thi học sinh giỏi lớp 12 cấp tỉnh Đề thi học sinh giỏi Quảng NinhTài liệu liên quan:
-
8 trang 407 0 0
-
Bộ đề thi học sinh giỏi môn Lịch sử lớp 12 cấp tỉnh năm 2020-2021 có đáp án
26 trang 380 0 0 -
7 trang 359 0 0
-
Đề thi học sinh giỏi môn GDCD lớp 12 năm 2023-2024 có đáp án - Trường THPT Mai Anh Tuấn, Thanh Hóa
28 trang 315 0 0 -
8 trang 310 0 0
-
Ebook Bồi dưỡng học sinh giỏi Tiếng Anh lớp 5 theo chuyên đề
138 trang 276 0 0 -
Đề thi học sinh giỏi môn Ngữ văn lớp 6 năm 2022-2023 có đáp án - Trường THCS Ninh An
8 trang 273 0 0 -
8 trang 257 0 0
-
Đề thi học sinh giỏi môn Ngữ văn lớp 8 năm 2021-2022 có đáp án - Phòng GD&ĐT Châu Đức
4 trang 247 0 0 -
Đề thi học sinh giỏi cấp tỉnh môn Vật lý THPT năm 2023-2024 có đáp án - Sở GD&ĐT Vĩnh Long
6 trang 242 0 0