Đề thi học sinh giỏi môn Toán lớp 12 cấp tỉnh năm 2020-2021 - Sở GD&ĐT Quảng Ninh
Số trang: 12
Loại file: pdf
Dung lượng: 561.34 KB
Lượt xem: 10
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Nhằm giúp các bạn học sinh đang chuẩn bị bước vào kì thi có thêm tài liệu ôn tập, TaiLieu.VN giới thiệu đến các bạn Đề thi học sinh giỏi môn Toán lớp 12 cấp tỉnh năm 2020-2021 - Sở GD&ĐT Quảng Ninh để ôn tập nắm vững kiến thức. Chúc các bạn đạt kết quả cao trong kì thi!
Nội dung trích xuất từ tài liệu:
Đề thi học sinh giỏi môn Toán lớp 12 cấp tỉnh năm 2020-2021 - Sở GD&ĐT Quảng NinhSỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI CHỌN HỌC SINH GIỎI CẤP TỈNH THPT NĂM 2020 TỈNH QUẢNG NINH Môn thi : TOÁN – Bảng A Ngày thi : 01/12/2020 ĐỀ THI CHÍNH THỨC Thời gian làm bài : 180 phút, không kể thời gian giao đề (Đề thi này có 01 trang) Câu 1. (5 điểm) x2 a) Cho hàm số y = (m là tham số). Tìm tất cả các giá trị thực của m để hàm số x+m đồng biến trên khoảng (−∞; −2). x3 + 2 b) Cho hàm số y = x2 + 4 x + (1) . Tìm các đường tiệm cận đứng và tiệm cận x 2 + 3x ngang của đồ thị hàm số (1) . Câu 2. (3 điểm) Lớp 12B lập Kế hoạch tiết kiệm 5 triệu đồng tiền tiêu vặt trong 5 tháng để ủng hộ đồng bào bị thiên tai như sau: Vào các ngày mùng 1 của các tháng 1, 2, 3, 4, 5 của năm 2021 mỗi học sinh trong lớp tiết kiệm số tiền giống nhau là A đồng và nộp lại cho lớp trưởng để lớp trưởng gửi vào ngân hàng theo hình thức lãi kép (lãi nhập vào gốc để tính lãi ở tháng tiếp theo) với lãi suất r (r > 0) trên một tháng (lãi suất không đổi trong suốt thời gian gửi). Hãy xây dựng công thức tính A theo r biết rằng lớp có 40 học sinh và ngày rút tiền ủng hộ là ngày 01/6/2021 (chỉ rút duy nhất một lần). Câu 3. (3 điểm) Cho tam giác ABC thỏa mãn sin A + 2 sin B = 3sin C và AC = 2 BC cos C . Tính tỷ số R với R và r lần lượt là bán kính đường tròn ngoại tiếp và bán kính đường tròn nội tiếp tam r giác IAB với I là trung điểm AC . Câu 4. (5 điểm) a) Cho lăng trụ tam giác ABC. A B C , biết hình chóp A . ABC là hình chóp tam giác đều cạnh đáy bằng a , ( A BC ) ⊥ ( AB C ) . Tính thể tích khối lăng trụ ABC. A B C theo a . b) Cho hình chóp S . ABCD có đáy là hình chữ nhật với = AB 2= a, BC a , tam giác SAB vuông đỉnh A , tam giác SBC vuông đỉnh C , d ( A;( SBC )) = a 2 . Tính khoảng cách giữa SB và AC theo a . ( x − 2) + 8 y + 2 y + x − 2 = 3 3 0 Câu 5. (2 điểm) Cho hệ phương trình ( m là tham số; x, y ∈ ). m log 2 ( x + 1) − log 2 y + 1 =0 Tìm giá trị thực lớn nhất của m để hệ phương trình có nghiệm ( x; y ) với x > 0, y > 0 . Câu 6. (2 điểm). Tìm số nghiệm thực của bất phương trình ( x3 + x − 2) 2 x log 2 x + 1 − x 2 ≥ 0. ------------------------- Hết -------------------------- - Thí sinh không được sử dụng tài liệu và máy tính cầm tay. - Giám thị không giải thích gì thêm. Họ và tên thí sinh: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Số báo danh: . . . . . . . . . . . . . . . . .. . . . . . Chữ ký của giám 1:…… . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chữ ký của giám thị 2: . . . . . . . . . . . . . . . . . . . . .. . SỞ GIÁO DỤC VÀ ĐÀO TẠO HƯỚNG DẪN CHẤM THI CHỌN HỌC SINH GIỎI TỈNH QUẢNG NINH CẤP TỈNH THPT NĂM 2020 Môn thi: Toán - Bảng A ĐỀ THI CHÍNH THỨC Ngày thi: 01/12/2020 Thời gian làm bài: 180 phút, không kể thời gian giao đề (Hướng dẫn chấm này có 05 trang)Câu Ý Nội dung Điểm x2 Cho hàm số y = (m là tham số). Tìm tất cả các giá trị thực của m để 2,5 x+m hàm số đồng biến trên khoảng (−∞; −2). TXĐ: D R {−m} nên để hàm số xác định trên = 0,5 (−∞; −2) ⇔ − m ≥ −2 ⇔ m ≤ 2 (1) ; a 1 x 2 + 2mx y = 0,5 ( x + m) 2 x 2 + 2mx y = Để hs đồng biến trên (−∞; −2) ⇔ y ≥ 0, ∀x < −2 0,5 ( x + m) 2 ⇔ x 2 + 2mx ≥ 0, ∀x < −2 ⇔ ...
Nội dung trích xuất từ tài liệu:
Đề thi học sinh giỏi môn Toán lớp 12 cấp tỉnh năm 2020-2021 - Sở GD&ĐT Quảng NinhSỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI CHỌN HỌC SINH GIỎI CẤP TỈNH THPT NĂM 2020 TỈNH QUẢNG NINH Môn thi : TOÁN – Bảng A Ngày thi : 01/12/2020 ĐỀ THI CHÍNH THỨC Thời gian làm bài : 180 phút, không kể thời gian giao đề (Đề thi này có 01 trang) Câu 1. (5 điểm) x2 a) Cho hàm số y = (m là tham số). Tìm tất cả các giá trị thực của m để hàm số x+m đồng biến trên khoảng (−∞; −2). x3 + 2 b) Cho hàm số y = x2 + 4 x + (1) . Tìm các đường tiệm cận đứng và tiệm cận x 2 + 3x ngang của đồ thị hàm số (1) . Câu 2. (3 điểm) Lớp 12B lập Kế hoạch tiết kiệm 5 triệu đồng tiền tiêu vặt trong 5 tháng để ủng hộ đồng bào bị thiên tai như sau: Vào các ngày mùng 1 của các tháng 1, 2, 3, 4, 5 của năm 2021 mỗi học sinh trong lớp tiết kiệm số tiền giống nhau là A đồng và nộp lại cho lớp trưởng để lớp trưởng gửi vào ngân hàng theo hình thức lãi kép (lãi nhập vào gốc để tính lãi ở tháng tiếp theo) với lãi suất r (r > 0) trên một tháng (lãi suất không đổi trong suốt thời gian gửi). Hãy xây dựng công thức tính A theo r biết rằng lớp có 40 học sinh và ngày rút tiền ủng hộ là ngày 01/6/2021 (chỉ rút duy nhất một lần). Câu 3. (3 điểm) Cho tam giác ABC thỏa mãn sin A + 2 sin B = 3sin C và AC = 2 BC cos C . Tính tỷ số R với R và r lần lượt là bán kính đường tròn ngoại tiếp và bán kính đường tròn nội tiếp tam r giác IAB với I là trung điểm AC . Câu 4. (5 điểm) a) Cho lăng trụ tam giác ABC. A B C , biết hình chóp A . ABC là hình chóp tam giác đều cạnh đáy bằng a , ( A BC ) ⊥ ( AB C ) . Tính thể tích khối lăng trụ ABC. A B C theo a . b) Cho hình chóp S . ABCD có đáy là hình chữ nhật với = AB 2= a, BC a , tam giác SAB vuông đỉnh A , tam giác SBC vuông đỉnh C , d ( A;( SBC )) = a 2 . Tính khoảng cách giữa SB và AC theo a . ( x − 2) + 8 y + 2 y + x − 2 = 3 3 0 Câu 5. (2 điểm) Cho hệ phương trình ( m là tham số; x, y ∈ ). m log 2 ( x + 1) − log 2 y + 1 =0 Tìm giá trị thực lớn nhất của m để hệ phương trình có nghiệm ( x; y ) với x > 0, y > 0 . Câu 6. (2 điểm). Tìm số nghiệm thực của bất phương trình ( x3 + x − 2) 2 x log 2 x + 1 − x 2 ≥ 0. ------------------------- Hết -------------------------- - Thí sinh không được sử dụng tài liệu và máy tính cầm tay. - Giám thị không giải thích gì thêm. Họ và tên thí sinh: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Số báo danh: . . . . . . . . . . . . . . . . .. . . . . . Chữ ký của giám 1:…… . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chữ ký của giám thị 2: . . . . . . . . . . . . . . . . . . . . .. . SỞ GIÁO DỤC VÀ ĐÀO TẠO HƯỚNG DẪN CHẤM THI CHỌN HỌC SINH GIỎI TỈNH QUẢNG NINH CẤP TỈNH THPT NĂM 2020 Môn thi: Toán - Bảng A ĐỀ THI CHÍNH THỨC Ngày thi: 01/12/2020 Thời gian làm bài: 180 phút, không kể thời gian giao đề (Hướng dẫn chấm này có 05 trang)Câu Ý Nội dung Điểm x2 Cho hàm số y = (m là tham số). Tìm tất cả các giá trị thực của m để 2,5 x+m hàm số đồng biến trên khoảng (−∞; −2). TXĐ: D R {−m} nên để hàm số xác định trên = 0,5 (−∞; −2) ⇔ − m ≥ −2 ⇔ m ≤ 2 (1) ; a 1 x 2 + 2mx y = 0,5 ( x + m) 2 x 2 + 2mx y = Để hs đồng biến trên (−∞; −2) ⇔ y ≥ 0, ∀x < −2 0,5 ( x + m) 2 ⇔ x 2 + 2mx ≥ 0, ∀x < −2 ⇔ ...
Tìm kiếm theo từ khóa liên quan:
Đề thi học sinh giỏi Đề thi học sinh giỏi lớp 12 Đề thi HSG lớp 12 Đề thi học sinh giỏi năm 2020 Đề thi học sinh giỏi môn Toán 12 cấp tỉnh Luyện thi HSG Toán 12 Ôn thi học sinh giỏi lớp 12 môn Toán Đề thi học sinh giỏi lớp 12 cấp tỉnh Đề thi học sinh giỏi Quảng NinhTài liệu liên quan:
-
8 trang 407 0 0
-
Bộ đề thi học sinh giỏi môn Lịch sử lớp 12 cấp tỉnh năm 2020-2021 có đáp án
26 trang 380 0 0 -
7 trang 359 0 0
-
Đề thi học sinh giỏi môn GDCD lớp 12 năm 2023-2024 có đáp án - Trường THPT Mai Anh Tuấn, Thanh Hóa
28 trang 315 0 0 -
8 trang 310 0 0
-
Ebook Bồi dưỡng học sinh giỏi Tiếng Anh lớp 5 theo chuyên đề
138 trang 276 0 0 -
Đề thi học sinh giỏi môn Ngữ văn lớp 6 năm 2022-2023 có đáp án - Trường THCS Ninh An
8 trang 273 0 0 -
8 trang 257 0 0
-
Đề thi học sinh giỏi môn Ngữ văn lớp 8 năm 2021-2022 có đáp án - Phòng GD&ĐT Châu Đức
4 trang 247 0 0 -
Đề thi học sinh giỏi cấp tỉnh môn Vật lý THPT năm 2023-2024 có đáp án - Sở GD&ĐT Vĩnh Long
6 trang 242 0 0