Đề thi học sinh giỏi môn Toán lớp 12 cấp tỉnh năm 2021-2022 có đán án - Sở GD&ĐT Bình Dương
Số trang: 5
Loại file: pdf
Dung lượng: 2.38 MB
Lượt xem: 6
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Nhằm giúp các em học sinh đang chuẩn bị bước vào kì thi HSG tốt hơn. TaiLieu.VN mời các em tham khảo Đề thi học sinh giỏi môn Toán lớp 12 cấp tỉnh năm 2021-2022 có đán án - Sở GD&ĐT Bình Dương để giúp các em ôn tập và hệ thống kiến thức môn học, nâng cao kĩ năng giải đề và biết phân bổ thời thời gian hợp lý trong bài thi.
Nội dung trích xuất từ tài liệu:
Đề thi học sinh giỏi môn Toán lớp 12 cấp tỉnh năm 2021-2022 có đán án - Sở GD&ĐT Bình Dương SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI CHỌN HỌC SINH GIỎI LỚP 12 BÌNH DƯƠNG NĂM HỌC 2021 – 2022 MÔN THI: TOÁN Thời gian: 90 phút (Không kể thời gian phát đề)Câu 1. [HSG-BÌNH DƯƠNG 2021-2022] Giải phương trình sau trên tập số thực: x 4 x 2 1 2 2 x 4 x 2 . 4 x x 5 x 1 Lời giải 2 x 4 2 x 4 Điều kiện: 2 x4. 4 x x 5 0 4 x 4 x 1 0 Ta có x 4 x 2 1 2 2 x 4 x 2 4 x x 5 x 1 x 1 x 4 x 2 1 4 x x 5 2 2 x 2 x 2 x 2 9 x 16 x 2 2 x 2 4 x x 2 2 4 x 3x 11 0.(1) Áp dụng bất đẳng thức Cauchy, ta được x 9 x 16 x 2 2 x 2 4 x x 2 2 2 4 x 3x 11 x 9 x 16 x 1 2 x 2 5 x 3x 11 2 2 1 3 1 2 x 10 x 2 33x 36 x 4 x 3 0, x 2; 4. 2 2 Như vậy vế trái của (1) nhỏ hơn hoặc bằng 0. Do đó phương trình có nghiệm khi x 4 x 3 x 2 1 x 3. 4 x x 2 4 x 1 Thử lại ta kết luận phương trình có nghiệm duy nhất: x 3 .Câu 2. [HSG-BÌNH DƯƠNG 2021-2022] Cho các số nguyên tố thỏa mãn p1 p2 p3 p4 và p4 p1 8 . Giả sử p1 5 . Chứng minh rằng p1 chia 30 dư 11. Lời giải Từ giả thiết thì p2 , p3 chỉ có thể nhận hai trong ba giá trị lần lượt là p1 2; p1 4; p1 6 . p2 p1 2 Trường hợp 1: thì trong ba số p1 , p2 , p3 có một số chia hết cho 3. p3 p1 4 Điều này là vô lí. p2 p1 4 Trường hợp 2: thì trong ba số p2 , p3 , p4 có một số chia hết cho 3. p3 p1 6 Điều này là vô lí. p1 2 mod 3 Do đó p2 p1 2, p3 p1 6, p4 p1 8 . Từ đó suy ra: . p1 1 mod 5 Kết hợp với p1 lẻ ta suy ra p1 11 mod 30 tức ta có điều cần phải chứng minh. 1 3 5 (2n 1)Câu 3. [HSG-BÌNH DƯƠNG 2021-2022] Cho dãy số un với un . . ... . Tính lim un . 2 4 6 (2n 2) Lời giải Ta có 2 1.3 4 3.5 6 5.7 … 2n 2 (2n 1) 2n 3 . Do đó 2.4.6...(2n 2) 12.32.52...(2n 1) 2 .(2n 3) 1.3.5...(2n 1) 2n 3 . Suy ra 1 3 5 (2n 1) 1 0 un . . ... . 2 4 6 (2n 2) 2n 3 1 Áp dụng nguyên lý kẹp, vì lim 0 nên lim un 0 . 2n 3Câu 4. [HSG-BÌNH DƯƠNG 2021-2022] Một hàng cây bưởi Tân Uyên gồm 17 cây thẳng hàng được đánh số cây theo thứ tự là các số tự nhiên từ 1 đến 17. Ban đầu mỗi cây có một con ong đậu trên đó để hút mật hoa. Sau đó, cứ mỗi giờ có hai con ong nào đó bay sang hai cây bên cạnh để tìm và hút mật nhưng theo hai chiều ngược nhau. Hỏi sau một số giờ, có hay không trường hợp mà: a) Không có con ong ở cây có thứ tự chẵn. b) Có 9 con ong ở cây cuối cùng. ...
Nội dung trích xuất từ tài liệu:
Đề thi học sinh giỏi môn Toán lớp 12 cấp tỉnh năm 2021-2022 có đán án - Sở GD&ĐT Bình Dương SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI CHỌN HỌC SINH GIỎI LỚP 12 BÌNH DƯƠNG NĂM HỌC 2021 – 2022 MÔN THI: TOÁN Thời gian: 90 phút (Không kể thời gian phát đề)Câu 1. [HSG-BÌNH DƯƠNG 2021-2022] Giải phương trình sau trên tập số thực: x 4 x 2 1 2 2 x 4 x 2 . 4 x x 5 x 1 Lời giải 2 x 4 2 x 4 Điều kiện: 2 x4. 4 x x 5 0 4 x 4 x 1 0 Ta có x 4 x 2 1 2 2 x 4 x 2 4 x x 5 x 1 x 1 x 4 x 2 1 4 x x 5 2 2 x 2 x 2 x 2 9 x 16 x 2 2 x 2 4 x x 2 2 4 x 3x 11 0.(1) Áp dụng bất đẳng thức Cauchy, ta được x 9 x 16 x 2 2 x 2 4 x x 2 2 2 4 x 3x 11 x 9 x 16 x 1 2 x 2 5 x 3x 11 2 2 1 3 1 2 x 10 x 2 33x 36 x 4 x 3 0, x 2; 4. 2 2 Như vậy vế trái của (1) nhỏ hơn hoặc bằng 0. Do đó phương trình có nghiệm khi x 4 x 3 x 2 1 x 3. 4 x x 2 4 x 1 Thử lại ta kết luận phương trình có nghiệm duy nhất: x 3 .Câu 2. [HSG-BÌNH DƯƠNG 2021-2022] Cho các số nguyên tố thỏa mãn p1 p2 p3 p4 và p4 p1 8 . Giả sử p1 5 . Chứng minh rằng p1 chia 30 dư 11. Lời giải Từ giả thiết thì p2 , p3 chỉ có thể nhận hai trong ba giá trị lần lượt là p1 2; p1 4; p1 6 . p2 p1 2 Trường hợp 1: thì trong ba số p1 , p2 , p3 có một số chia hết cho 3. p3 p1 4 Điều này là vô lí. p2 p1 4 Trường hợp 2: thì trong ba số p2 , p3 , p4 có một số chia hết cho 3. p3 p1 6 Điều này là vô lí. p1 2 mod 3 Do đó p2 p1 2, p3 p1 6, p4 p1 8 . Từ đó suy ra: . p1 1 mod 5 Kết hợp với p1 lẻ ta suy ra p1 11 mod 30 tức ta có điều cần phải chứng minh. 1 3 5 (2n 1)Câu 3. [HSG-BÌNH DƯƠNG 2021-2022] Cho dãy số un với un . . ... . Tính lim un . 2 4 6 (2n 2) Lời giải Ta có 2 1.3 4 3.5 6 5.7 … 2n 2 (2n 1) 2n 3 . Do đó 2.4.6...(2n 2) 12.32.52...(2n 1) 2 .(2n 3) 1.3.5...(2n 1) 2n 3 . Suy ra 1 3 5 (2n 1) 1 0 un . . ... . 2 4 6 (2n 2) 2n 3 1 Áp dụng nguyên lý kẹp, vì lim 0 nên lim un 0 . 2n 3Câu 4. [HSG-BÌNH DƯƠNG 2021-2022] Một hàng cây bưởi Tân Uyên gồm 17 cây thẳng hàng được đánh số cây theo thứ tự là các số tự nhiên từ 1 đến 17. Ban đầu mỗi cây có một con ong đậu trên đó để hút mật hoa. Sau đó, cứ mỗi giờ có hai con ong nào đó bay sang hai cây bên cạnh để tìm và hút mật nhưng theo hai chiều ngược nhau. Hỏi sau một số giờ, có hay không trường hợp mà: a) Không có con ong ở cây có thứ tự chẵn. b) Có 9 con ong ở cây cuối cùng. ...
Tìm kiếm theo từ khóa liên quan:
Đề thi học sinh giỏi Đề thi học sinh giỏi môn Toán Đề thi HSG môn Toán lớp 12 năm 2021 Đề thi HSG môn Toán lớp 12 cấp tỉnh Giải phương trình Giải hệ phương trìnhTài liệu liên quan:
-
9 trang 492 0 0
-
8 trang 407 0 0
-
Bộ đề thi học sinh giỏi môn Lịch sử lớp 12 cấp tỉnh năm 2020-2021 có đáp án
26 trang 380 0 0 -
7 trang 359 0 0
-
Đề thi học sinh giỏi môn GDCD lớp 12 năm 2023-2024 có đáp án - Trường THPT Mai Anh Tuấn, Thanh Hóa
28 trang 315 0 0 -
8 trang 310 0 0
-
Ebook Bồi dưỡng học sinh giỏi Tiếng Anh lớp 5 theo chuyên đề
138 trang 276 0 0 -
Đề thi học sinh giỏi môn Ngữ văn lớp 6 năm 2022-2023 có đáp án - Trường THCS Ninh An
8 trang 273 0 0 -
Bộ đề thi học sinh giỏi môn Toán lớp 9 năm 2017-2018 có đáp án
82 trang 270 0 0 -
8 trang 257 0 0