Danh mục

Đề thi học sinh giỏi môn Toán lớp 12 cấp tỉnh năm 2021-2022 có đán án - Sở GD&ĐT Bình Dương

Số trang: 5      Loại file: pdf      Dung lượng: 2.38 MB      Lượt xem: 6      Lượt tải: 0    
Jamona

Hỗ trợ phí lưu trữ khi tải xuống: miễn phí Tải xuống file đầy đủ (5 trang) 0

Báo xấu

Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Nhằm giúp các em học sinh đang chuẩn bị bước vào kì thi HSG tốt hơn. TaiLieu.VN mời các em tham khảo Đề thi học sinh giỏi môn Toán lớp 12 cấp tỉnh năm 2021-2022 có đán án - Sở GD&ĐT Bình Dương để giúp các em ôn tập và hệ thống kiến thức môn học, nâng cao kĩ năng giải đề và biết phân bổ thời thời gian hợp lý trong bài thi.
Nội dung trích xuất từ tài liệu:
Đề thi học sinh giỏi môn Toán lớp 12 cấp tỉnh năm 2021-2022 có đán án - Sở GD&ĐT Bình Dương SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI CHỌN HỌC SINH GIỎI LỚP 12 BÌNH DƯƠNG NĂM HỌC 2021 – 2022 MÔN THI: TOÁN Thời gian: 90 phút (Không kể thời gian phát đề)Câu 1. [HSG-BÌNH DƯƠNG 2021-2022] Giải phương trình sau trên tập số thực:  x  4 x  2  1  2   2 x  4 x  2 . 4 x  x 5 x 1 Lời giải 2  x  4 2  x  4 Điều kiện:    2 x4.  4  x  x  5  0   4  x   4  x  1  0 Ta có  x  4 x  2  1  2   2 x  4 x  2 4 x  x 5 x 1     x  1  x  4  x  2  1  4  x  x  5  2  2  x  2  x  2    x 2  9 x  16  x  2  2  x  2   4  x  x  2   2 4  x  3x  11  0.(1) Áp dụng bất đẳng thức Cauchy, ta được  x  9 x  16 x  2  2  x  2   4  x  x  2   2 2 4  x  3x  11  x  9 x  16  x  1  2 x  2  5  x  3x  11 2    2 1 3 1  2  x  10 x 2  33x  36    x  4  x  3  0, x   2; 4. 2 2 Như vậy vế trái của (1) nhỏ hơn hoặc bằng 0. Do đó phương trình có nghiệm khi  x  4   x  3   x  2 1  x  3.  4  x  x  2 4  x  1 Thử lại ta kết luận phương trình có nghiệm duy nhất: x  3 .Câu 2. [HSG-BÌNH DƯƠNG 2021-2022] Cho các số nguyên tố thỏa mãn p1  p2  p3  p4 và p4  p1  8 . Giả sử p1  5 . Chứng minh rằng p1 chia 30 dư 11. Lời giải Từ giả thiết thì p2 , p3 chỉ có thể nhận hai trong ba giá trị lần lượt là  p1  2; p1  4; p1  6 .  p2  p1  2 Trường hợp 1:  thì trong ba số p1 , p2 , p3 có một số chia hết cho 3.  p3  p1  4 Điều này là vô lí.  p2  p1  4 Trường hợp 2:  thì trong ba số p2 , p3 , p4 có một số chia hết cho 3.  p3  p1  6 Điều này là vô lí.  p1  2  mod 3  Do đó p2  p1  2, p3  p1  6, p4  p1  8 . Từ đó suy ra:  .  p1  1 mod 5  Kết hợp với p1 lẻ ta suy ra p1  11 mod 30  tức ta có điều cần phải chứng minh. 1 3 5 (2n  1)Câu 3. [HSG-BÌNH DƯƠNG 2021-2022] Cho dãy số un  với un  . . ... . Tính lim un . 2 4 6 (2n  2) Lời giải Ta có 2  1.3 4  3.5 6  5.7 … 2n  2  (2n  1)  2n  3 . Do đó 2.4.6...(2n  2)  12.32.52...(2n  1) 2 .(2n  3)  1.3.5...(2n  1) 2n  3 . Suy ra 1 3 5 (2n  1) 1 0  un  . . ...  . 2 4 6 (2n  2) 2n  3 1 Áp dụng nguyên lý kẹp, vì lim  0 nên lim un  0 . 2n  3Câu 4. [HSG-BÌNH DƯƠNG 2021-2022] Một hàng cây bưởi Tân Uyên gồm 17 cây thẳng hàng được đánh số cây theo thứ tự là các số tự nhiên từ 1 đến 17. Ban đầu mỗi cây có một con ong đậu trên đó để hút mật hoa. Sau đó, cứ mỗi giờ có hai con ong nào đó bay sang hai cây bên cạnh để tìm và hút mật nhưng theo hai chiều ngược nhau. Hỏi sau một số giờ, có hay không trường hợp mà: a) Không có con ong ở cây có thứ tự chẵn. b) Có 9 con ong ở cây cuối cùng. ...

Tài liệu được xem nhiều:

Tài liệu liên quan: