Danh mục

Đề thi học sinh giỏi môn Toán lớp 9 năm 2022-2023 có đáp án - Phòng GD&ĐT huyện Mù Cang Chải

Số trang: 5      Loại file: docx      Dung lượng: 173.69 KB      Lượt xem: 7      Lượt tải: 0    
tailieu_vip

Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Nhằm giúp các bạn có thêm tài liệu ôn tập, củng cố lại kiến thức đã học và rèn luyện kỹ năng làm bài tập, mời các bạn cùng tham khảo ‘Đề thi học sinh giỏi môn Toán lớp 9 năm 2022-2023 có đáp án - Phòng GD&ĐT huyện Mù Cang Chải’ dưới đây. Hy vọng sẽ giúp các bạn tự tin hơn trong kỳ thi sắp tới.
Nội dung trích xuất từ tài liệu:
Đề thi học sinh giỏi môn Toán lớp 9 năm 2022-2023 có đáp án - Phòng GD&ĐT huyện Mù Cang Chải PHÒNG GD&ĐT MÙ CANG CHẢI ĐỀ THI HỌC SINH GIỎI TRƯỜNG PTDTBT TH&THCS MÔN: TOÁN KIM NỌI LỚP: 9 Thời gian làm bài: 120 phút (Đề này gồm 5 câu, 01 trang) - Họ và tên học sinh ...............................................Số báo danh..................... - Trường ........................................................................................................... Họ tên, chữ ký giám thị 1: Số phách....................................................................................................... Họ tên, chữ ký giám thị 2:........................................................................................................... ĐỀ BÀICâu 1: (4,0 điểm)a) Rút gọn biểu thức:b) Chứng minh rằng: với .Câu 2: (5,0 điểm)a) Giải phương trình:b) Cho và . Tính giá trị đa thức: .Câu 3: (6,0 điểm) Cho hình vuông ABCD có độ dài cạnh bằng 2cm. Gọi E, F thứ tự là trung điểmcủa AD, DC. Gọi I, H thứ thự là giao điểm của AF với BE, BD. Vẽ (M thuộc cạnhBC), O là giao điểm của IM và BD. a) Tính độ dài của AI, BI. b) Chứng minh 4 điểm B, I, H, M cùng thuộc một đường tròn. c) Chứng minh DH.BO = OH.BD.Câu 4: (3 điểm): Tìm nghiệm nguyên dương của:Câu 5: (2 điểm)Cho x, y là hai số dương thỏa mãn: x2 + y2 = 4.Tìm giá trị nhỏ nhất của biểu thức: HƯỚNG DẪN CHẤM MÔN: TOÁN LỚP: 9 (Hướng dẫn chấm gồm: 4 trang) Trần Hưng Nguyên XÁC NHẬN CỦA TỔ CHUYÊN MÔN Ngô Thị QuỳnhPHÒNG GD&ĐT MÙ CANG CHẢIHƯỚNG DẪN CHẤM THI HSG CẤPHUYỆNTRƯỜNG PTDTBT TH&RTHCSNĂM HỌC 2022-2023 KIM NỌIMÔN: TOÁN - LỚP: 9 Thời gian làm bài: 150 phút(HD này gồm 4 trang) Câu Đáp án Điểm a. (2,5 điểm) 0,5 0,5 0,5 0,5 0,5 Câu 1 b. (1,5 điểm)(4 điểm) 2) Với : 0,5 0,5 0,25 =0 0,25 a. (3 điểm) ĐK: : 0,5 0,5 (Do ) 0,5 0,5 hoặc Câu 2 0,5 (Loại)(5 điểm) (Thỏa mãn) 0,5 b. (2 điểm) Cho và 0,5 0,5 Ta có: 0,5 Hay: 0,5 Câu 3(6 điểm) 0,5 a. (2 điểm) Chứng minh được 0,25 Mà 0,25 Xét tam giác ABE vuông tại A, theo định lý Pytago có: (cm) 0,5 Lại có AIBE, do đó: AI.BE = AB.AE (cm) 0,5 BI.BE = AB2 (cm) 0,5 b. (2,5 điểm) 0,25 Xét và có 0,25 (cùng phụ với ) Suy ra (g.g) (1) Ta có 0,25 (cm); (cm) 0,25 Từ (1) (cm) 0,25 Ta có 0,25 (c.g.c) Do đó , mà hai góc này ở vị trí đồng vị MH // CD 0,25 Mà BCCD MHBC Ta có và là hai tam giác vuông có chung cạnh huyền BH, do đó 0,25 4 điểm B, I, H, M cùng thuộc đường tròn đường kính BH. 0,25 0,25 c. (1 điểm) Ta có , do đó IM là phân giác của Ta lại có (cm) ...

Tài liệu được xem nhiều:

Gợi ý tài liệu liên quan: