Đề thi học sinh giỏi Toán 12 năm 2012-2013 - Sở GDĐT TP. HCM
Số trang: 9
Loại file: pdf
Dung lượng: 574.37 KB
Lượt xem: 15
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Đề thi học sinh giỏi môn Toan lớp 12 năm 2012 - 2013 của sở giáo dục và đào tạo TP.HCM dành cho các bạn học sinh lớp 12 giúp các em ôn tập lại kiến thức đã học và đồng thời giáo viên cũng có thêm tư liệu tham khảo trong việc ra đề thi.
Nội dung trích xuất từ tài liệu:
Đề thi học sinh giỏi Toán 12 năm 2012-2013 - Sở GDĐT TP. HCM www.VNMATH.com ̉ ́ ̀SƠ GIAO DỤC VÀ ĐAO TẠO KỲ THI CHỌN ĐỘI TUYỂN HỌC SINH GIỎITHÀNH PHỐ HỒ CHÍ MINH LỚP 12 THPT NĂM HỌC 2012-2013 MÔN THI: TOÁN Ngày thi: 18 - 10 - 2012ĐỀ CHÍNH THỨC Thời gian làm bài: 180 phút.Bài 1. (4 điểm) xy x y 1 Giải hệ phương trình 3 4 x 12 x 9 x y 6 y 7 2 3Bài 2. (4 điểm) 1 u1 2 Cho dãy số (un ) xác định bởi 3u 4 un 1 n , n N * 2un 1 Chứng minh dãy số (un ) có giới hạn hữu hạn và tìm giới hạn đó.Bài 3. (4 điểm) 1 1 1 Cho x, y, z là các số dương thỏa mãn 1 . Chứng minh: x y z x yz y zx z xy xyz x y zBài 4. (4 điểm) Cho tam giác nhọn ABC với các đường cao AH , BK nội tiếp đường tròn (O). Gọi M là một điểm di động trên cung nhỏ BC của đường tròn (O) sao cho các đường thẳng AM và BK cắt nhau tại E ; các đường thẳng BM và AH cắt nhau tại F . Chứng minh rằng khi M di động trên cung nhỏ BC của đường tròn (O) thì trung điểm của đoạn EF luôn nằm trên một đường thẳng cố định.Bài 5. (4 điểm) Tìm tất cả các đa thức P( x ) hệ số thực thỏa mãn : P( x).P( x 3) P( x 2 ), x HẾT www.VNMATH.com ĐÁP ÁN ĐỀ VÒNG 1Bài 1. (4 điểm) xy x y 1 Giải hệ phương trình 3 4 x 12 x 9 x y 6 y 7 2 3Giải yz z 2Đặt z x 1 Hệ phương trình tương đương 3 y 3 y ( z 2) 4 z 0 3 yz z 2 yz z 2 3 y 3y z 4z 0 y z y 2z 2 3 1 17 1 17 5 17 5 17 z z x x 4 4 4 4 y 1 17 y 1 17 y 1 17 y 1 17 2 2 2 2Bài 2. (4 điểm) 1 u1 2 Cho dãy số (un ) xác định bởi 3u 4 un 1 n , n N * 2un 1 Chứng minh dãy số (un ) có giới hạn hữu hạn và tìm giới hạn đó.GiảiTừ giả thiết ta suy ra un 0, n N * 3x 4 3 5 5Xét f ( x ) , với x 0 , f ( x ) 0, x 0 2 x 1 2 2(2 x 1) (2 x 1)2 1 u1 Ta có 2 un 1 f (un ), n N * 3 5xf ( x) , x 0 và f ( x ) 4 0, x 0 2 2x 1 3 un 4, n 2 dãy (un ) bị chặn 2 x u2 n 1Đặt n yn u2 nDo f(x) nghịch biến trên (0; ) nên g(x) = f(f(x)) đồng biến trên (0; ) f ( xn ) f (u2n1 ) u2 n yn ; f ( yn ) f (u 2n ) u 2n 1 xn 1g ( xn ) f ( f ( xn )) f ( yn ) xn1 1 11 49u1 ; u2 ; u3 ….. Ta thấy u1 u3 x1 x2 2 4 26Giả sử rằng xk xk 1 g ( xk ) g ( xk 1 ) xk 1 xk 2 . Vậy xn xn1 , n N *Suy ra ( xn ) tăng và bị chặn trên ( xn ) có giới hạn hữu hạn a .Do xn xn1 f ( xn ) f ( xn1 ) yn yn1 dãy ( yn ) giảm và bị chặn d ...
Nội dung trích xuất từ tài liệu:
Đề thi học sinh giỏi Toán 12 năm 2012-2013 - Sở GDĐT TP. HCM www.VNMATH.com ̉ ́ ̀SƠ GIAO DỤC VÀ ĐAO TẠO KỲ THI CHỌN ĐỘI TUYỂN HỌC SINH GIỎITHÀNH PHỐ HỒ CHÍ MINH LỚP 12 THPT NĂM HỌC 2012-2013 MÔN THI: TOÁN Ngày thi: 18 - 10 - 2012ĐỀ CHÍNH THỨC Thời gian làm bài: 180 phút.Bài 1. (4 điểm) xy x y 1 Giải hệ phương trình 3 4 x 12 x 9 x y 6 y 7 2 3Bài 2. (4 điểm) 1 u1 2 Cho dãy số (un ) xác định bởi 3u 4 un 1 n , n N * 2un 1 Chứng minh dãy số (un ) có giới hạn hữu hạn và tìm giới hạn đó.Bài 3. (4 điểm) 1 1 1 Cho x, y, z là các số dương thỏa mãn 1 . Chứng minh: x y z x yz y zx z xy xyz x y zBài 4. (4 điểm) Cho tam giác nhọn ABC với các đường cao AH , BK nội tiếp đường tròn (O). Gọi M là một điểm di động trên cung nhỏ BC của đường tròn (O) sao cho các đường thẳng AM và BK cắt nhau tại E ; các đường thẳng BM và AH cắt nhau tại F . Chứng minh rằng khi M di động trên cung nhỏ BC của đường tròn (O) thì trung điểm của đoạn EF luôn nằm trên một đường thẳng cố định.Bài 5. (4 điểm) Tìm tất cả các đa thức P( x ) hệ số thực thỏa mãn : P( x).P( x 3) P( x 2 ), x HẾT www.VNMATH.com ĐÁP ÁN ĐỀ VÒNG 1Bài 1. (4 điểm) xy x y 1 Giải hệ phương trình 3 4 x 12 x 9 x y 6 y 7 2 3Giải yz z 2Đặt z x 1 Hệ phương trình tương đương 3 y 3 y ( z 2) 4 z 0 3 yz z 2 yz z 2 3 y 3y z 4z 0 y z y 2z 2 3 1 17 1 17 5 17 5 17 z z x x 4 4 4 4 y 1 17 y 1 17 y 1 17 y 1 17 2 2 2 2Bài 2. (4 điểm) 1 u1 2 Cho dãy số (un ) xác định bởi 3u 4 un 1 n , n N * 2un 1 Chứng minh dãy số (un ) có giới hạn hữu hạn và tìm giới hạn đó.GiảiTừ giả thiết ta suy ra un 0, n N * 3x 4 3 5 5Xét f ( x ) , với x 0 , f ( x ) 0, x 0 2 x 1 2 2(2 x 1) (2 x 1)2 1 u1 Ta có 2 un 1 f (un ), n N * 3 5xf ( x) , x 0 và f ( x ) 4 0, x 0 2 2x 1 3 un 4, n 2 dãy (un ) bị chặn 2 x u2 n 1Đặt n yn u2 nDo f(x) nghịch biến trên (0; ) nên g(x) = f(f(x)) đồng biến trên (0; ) f ( xn ) f (u2n1 ) u2 n yn ; f ( yn ) f (u 2n ) u 2n 1 xn 1g ( xn ) f ( f ( xn )) f ( yn ) xn1 1 11 49u1 ; u2 ; u3 ….. Ta thấy u1 u3 x1 x2 2 4 26Giả sử rằng xk xk 1 g ( xk ) g ( xk 1 ) xk 1 xk 2 . Vậy xn xn1 , n N *Suy ra ( xn ) tăng và bị chặn trên ( xn ) có giới hạn hữu hạn a .Do xn xn1 f ( xn ) f ( xn1 ) yn yn1 dãy ( yn ) giảm và bị chặn d ...
Tìm kiếm theo từ khóa liên quan:
Tam giác nhọn Hình học phẳng Dãy số hữu hạn Đề thi học sinh giỏi Toán Đề thi học sinh giỏi lớp 12 Đề thi học sinh giỏiGợi ý tài liệu liên quan:
-
8 trang 376 0 0
-
7 trang 346 0 0
-
Bộ đề thi học sinh giỏi môn Lịch sử lớp 12 cấp tỉnh năm 2020-2021 có đáp án
26 trang 324 0 0 -
8 trang 303 0 0
-
Đề thi học sinh giỏi môn GDCD lớp 12 năm 2023-2024 có đáp án - Trường THPT Mai Anh Tuấn, Thanh Hóa
28 trang 295 0 0 -
Ebook Bồi dưỡng học sinh giỏi Tiếng Anh lớp 5 theo chuyên đề
138 trang 271 0 0 -
Đề thi học sinh giỏi môn Ngữ văn lớp 6 năm 2022-2023 có đáp án - Trường THCS Ninh An
8 trang 243 0 0 -
8 trang 234 0 0
-
Đề thi học sinh giỏi môn Ngữ văn lớp 8 năm 2021-2022 có đáp án - Phòng GD&ĐT Châu Đức
4 trang 229 0 0 -
Đề thi học sinh giỏi cấp tỉnh môn Vật lý THPT năm 2023-2024 có đáp án - Sở GD&ĐT Vĩnh Long
6 trang 222 0 0