Danh mục

Đề thi HSG môn Toán lớp 12 năm 2019-2020 - Sở GD&ĐT Gia Lai

Số trang: 10      Loại file: pdf      Dung lượng: 747.21 KB      Lượt xem: 8      Lượt tải: 0    
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Gửi đến các bạn học sinh Đề thi HSG môn Toán lớp 12 - Sở GD&ĐT Gia Lai được TaiLieu.VN chia sẻ dưới đây nhằm giúp các em có thêm tư liệu để tham khảo cũng như củng cố kiến thức trước khi bước vào kì thi. Cùng tham khảo giải đề thi để ôn tập kiến thức và làm quen với cấu trúc đề thi các em nhé, chúc các em thi tốt!
Nội dung trích xuất từ tài liệu:
Đề thi HSG môn Toán lớp 12 năm 2019-2020 - Sở GD&ĐT Gia LaiNHÓM TOÁN VD – VDC ĐỀ THI HSG TOÁNSỞ GD&ĐT GIA LAI KỲ THI CHỌN HSG LỚP 12 ĐỀ CHÍNH THỨC NĂM HỌC 2019 - 2020 (Đề thi có 01 trang) MÔN: TOÁN –THPT NHÓM TOÁN VD – VDC Thời gian: 180 phútĐỀ BÀICâu 1: ( 2,0 điểm) Cho hàm số y =x3 − 3mx 2 + 3 có đồ thị ( C ) . Tìm tất cả các giá trị thực của tham số m để đường thẳng d : y = x cắt đồ thị ( C ) tại ba điểm phân biệt có hoành độ lập thành cấp số cộng.Câu 2: (4.0 điểm) a) Giải phương trình sau trên tập số thực 2 ( x 2 + 1) x − 1 + 8 = (5 + 4 ) x −1 x  x 2 + 2020 2019 y 2 − x2 = 2 (1) b) Giải hệ phương trình trên tập số thực  y + 2020  y 2 + 2 x 3x − 1 = 9 y − 3  ( 2)Câu 3: (2,0 điểm) 2 1  x )  x 2 + x + 1 ( x + 2 ) với n là số tự nhiên Tìm hệ số của x10 trong khai triển f (= 3n 4  thỏa mãn An3 + Cnn − 2 = 14n A C 2 3Câu 4: (2,0 điểm) Cho tam giác ABC có sin A + sin C = 2sin B và tan + tan =. Chứng 2 2 3 minh rằng tam giác ABC đều. u1 = 2 Câu 5: (2,0 điểm) Cho dãy số (un) xác định bởi  4un − 3 = u + , ∀n ≥ 1 − n 1  3u n 2 1 1 1 + + ... + u − 1 u1 − 2 un − 1 Tính A = lim 1 2 là một CSN. nCâu 6: (2,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy , cho hình chữ nhật ABCD . Gọi H là hình chiếu vuông góc của B lên AC , M và N lần lượt là trung điểm của BH và AH . Trên cạnh CD lấy điểm K sao cho tứ giác MNCK là hình bình hành. Biết 9 2 M  ;  , K ( 9; 2 ) , điểm B thuộc đường thẳng d1 : 2 x − y + 2 =0 và điểm C thuộc 5 5 d2 : x − y − 5 =0 và hoành độ đỉnh C lớn hơn 4 . Tìm tọa độ các đỉnh của hình chữ nhật ABCD .Câu 7: (2,0 điểm). Cho tứ diện ABCD có thể tích V . Gọi I là điểm thuộc miền trong của tứ diện ABCD , các đường thẳng AI , BI , CI , DI lần lượt cắt các mặt phẳng https://www.facebook.com/groups/toanvd.vdc Trang 1NHÓM TOÁN VD – VDC ĐỀ THI HSG TOÁN ( BCD ) , ( ACD ) , ( ABD ) , ( ABC ) tại các điểm M, N, P, Q thỏa mãn AI MI CI DI a a = = = . Biết VIBCD = V , với a, b ∈ ∗ và tối giản. Tính S= a + b . MI NI PI QI b b NHÓM TOÁN VD – VDCCâu 8: (4,0 điểm) Cho hai số thực dương a , b thỏa mãn 8ab − = ( ) 2 3 a 4 + b 4 . Tìm giá trị lớn 1 1 ab nhất của biểu thức P = + + . 1 + a 1 + b 1 + 3a 2b 2 2 2 ...

Tài liệu được xem nhiều:

Tài liệu liên quan: