Danh mục

Đề thi HSG Olympic môn Toán lớp 8 năm 2022-2023 có đáp án - Phòng GD&ĐT Quỳnh Lưu

Số trang: 4      Loại file: pdf      Dung lượng: 401.28 KB      Lượt xem: 13      Lượt tải: 0    
Jamona

Phí tải xuống: miễn phí Tải xuống file đầy đủ (4 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Với mong muốn giúp các bạn đạt kết quả cao trong kì thi sắp tới, TaiLieu.VN đã sưu tầm và chọn lọc gửi đến các bạn ‘Đề thi HSG Olympic môn Toán lớp 8 năm 2022-2023 có đáp án - Phòng GD&ĐT Quỳnh Lưu’ hi vọng đây sẽ là tư liệu ôn tập hiệu quả giúp các em đạt kết quả cao trong kì thi. Mời các bạn cùng tham khảo!
Nội dung trích xuất từ tài liệu:
Đề thi HSG Olympic môn Toán lớp 8 năm 2022-2023 có đáp án - Phòng GD&ĐT Quỳnh LưuPHÒNG GD&ĐT QUỲNH LƯU KỲ THI CHỌN HỌC SINH GIỎI OLYMPIC LỚP 8 NĂM HỌC 2022 - 2023 ĐỀ CHÍNH THỨC Đề thi môn: TOÁN (Đề thi gồm có 01 trang) Thời gian thi: 120 phút (Không kể thời gian giao đề) Ngày thi: 05 tháng 04 năm 2023Câu 1: (3,0 điểm) a. Tìm các cặp số nguyên (x; y) thỏa mãn b. Cho a, b, c là các số nguyên thỏa mãn a + b +2024c = c3. Chứng minh rằngCâu 2: (4,5 điểm) a. Giải phương trình b. Cho các số thực a, b, c thỏa mãn abc =1. Chứng minh rằng:Câu 3: (4,5 điểm) a. Biết rằng đa thức P(x) chia cho x -1 dư 2, P(x) chia cho x2 + 1 dư 3x + 4. Tìm đa thức dư trong phép chia P(x) cho (x -1)(x2+1). b. Cho các số thực a,b,c thỏa mãn: Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức P = .Câu 4: (7,0 điểm) Cho tam giác ABC nhọn (AB HƯỚNG DẪN CHẤM ĐỀ THI CHỌN HỌC SINH GIỎI OLYMPIC LỚP 8 Năm học: 2022 – 2023 THAM KHẢO Đề thi môn: Toán TT Ý Nội dung ĐiểmCâu 1 a. 2.0 đ 0.25 0.25 0.25 0.25 Chia ra 4 trường hợp, mỗi TH giải đúng 0.25x4 , , , Nghiệm của phương trình là x =1, y =1. b. 1.0 đ Ta có, 0.25 0.25 0.5Câu 2 a. 2.5 đ 0.25 1.5 0.25x3 b. 2.0 đ 1.0 0.5 0.5Câu 3 a. 2.5 đ Gọi đa thức thương là Q(x), 0.5 đa thức dư là ax2 + bx +c Ta có: P(x) =(x -1)(x2 + 1).Q(x) + ax2 + bx + c 0.5 =(x -1)(x2+1).Q(x) + a(x2+1) +bx + c – a Vì P(x) chia cho x -1 dư 2 nên ta có, P(1)=2 0.5 Vì P(x) chia cho x +1 dư 3x +4 nên 2 0.5 Suy ra 0.5 Vậy đa thức dư là x2 + 3x b. 2.0 đ • Ta có 0.25 0.25 0.25 Vậy Min P = 3 khi a = b = c = 1 0.25 • Ta có P = 0.25 0.25 Vì 0.25 bằng 0, một số bằng 1 0.25 Vậy Max P = 5 khi (a,b,c) là hoán vị của bộ số (0,1,2)Câu 4 A E I F H K B D C a. 3.0 đ 1.0 1.0 1.0 b. 3.0 đ 1.0 0.5 0.5 0.5 ...

Tài liệu được xem nhiều:

Gợi ý tài liệu liên quan: