Đề thi HSG Olympic môn Toán lớp 8 năm 2022-2023 có đáp án - Phòng GD&ĐT Quỳnh Lưu
Số trang: 4
Loại file: pdf
Dung lượng: 401.28 KB
Lượt xem: 13
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Với mong muốn giúp các bạn đạt kết quả cao trong kì thi sắp tới, TaiLieu.VN đã sưu tầm và chọn lọc gửi đến các bạn ‘Đề thi HSG Olympic môn Toán lớp 8 năm 2022-2023 có đáp án - Phòng GD&ĐT Quỳnh Lưu’ hi vọng đây sẽ là tư liệu ôn tập hiệu quả giúp các em đạt kết quả cao trong kì thi. Mời các bạn cùng tham khảo!
Nội dung trích xuất từ tài liệu:
Đề thi HSG Olympic môn Toán lớp 8 năm 2022-2023 có đáp án - Phòng GD&ĐT Quỳnh LưuPHÒNG GD&ĐT QUỲNH LƯU KỲ THI CHỌN HỌC SINH GIỎI OLYMPIC LỚP 8 NĂM HỌC 2022 - 2023 ĐỀ CHÍNH THỨC Đề thi môn: TOÁN (Đề thi gồm có 01 trang) Thời gian thi: 120 phút (Không kể thời gian giao đề) Ngày thi: 05 tháng 04 năm 2023Câu 1: (3,0 điểm) a. Tìm các cặp số nguyên (x; y) thỏa mãn b. Cho a, b, c là các số nguyên thỏa mãn a + b +2024c = c3. Chứng minh rằngCâu 2: (4,5 điểm) a. Giải phương trình b. Cho các số thực a, b, c thỏa mãn abc =1. Chứng minh rằng:Câu 3: (4,5 điểm) a. Biết rằng đa thức P(x) chia cho x -1 dư 2, P(x) chia cho x2 + 1 dư 3x + 4. Tìm đa thức dư trong phép chia P(x) cho (x -1)(x2+1). b. Cho các số thực a,b,c thỏa mãn: Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức P = .Câu 4: (7,0 điểm) Cho tam giác ABC nhọn (AB HƯỚNG DẪN CHẤM ĐỀ THI CHỌN HỌC SINH GIỎI OLYMPIC LỚP 8 Năm học: 2022 – 2023 THAM KHẢO Đề thi môn: Toán TT Ý Nội dung ĐiểmCâu 1 a. 2.0 đ 0.25 0.25 0.25 0.25 Chia ra 4 trường hợp, mỗi TH giải đúng 0.25x4 , , , Nghiệm của phương trình là x =1, y =1. b. 1.0 đ Ta có, 0.25 0.25 0.5Câu 2 a. 2.5 đ 0.25 1.5 0.25x3 b. 2.0 đ 1.0 0.5 0.5Câu 3 a. 2.5 đ Gọi đa thức thương là Q(x), 0.5 đa thức dư là ax2 + bx +c Ta có: P(x) =(x -1)(x2 + 1).Q(x) + ax2 + bx + c 0.5 =(x -1)(x2+1).Q(x) + a(x2+1) +bx + c – a Vì P(x) chia cho x -1 dư 2 nên ta có, P(1)=2 0.5 Vì P(x) chia cho x +1 dư 3x +4 nên 2 0.5 Suy ra 0.5 Vậy đa thức dư là x2 + 3x b. 2.0 đ • Ta có 0.25 0.25 0.25 Vậy Min P = 3 khi a = b = c = 1 0.25 • Ta có P = 0.25 0.25 Vì 0.25 bằng 0, một số bằng 1 0.25 Vậy Max P = 5 khi (a,b,c) là hoán vị của bộ số (0,1,2)Câu 4 A E I F H K B D C a. 3.0 đ 1.0 1.0 1.0 b. 3.0 đ 1.0 0.5 0.5 0.5 ...
Nội dung trích xuất từ tài liệu:
Đề thi HSG Olympic môn Toán lớp 8 năm 2022-2023 có đáp án - Phòng GD&ĐT Quỳnh LưuPHÒNG GD&ĐT QUỲNH LƯU KỲ THI CHỌN HỌC SINH GIỎI OLYMPIC LỚP 8 NĂM HỌC 2022 - 2023 ĐỀ CHÍNH THỨC Đề thi môn: TOÁN (Đề thi gồm có 01 trang) Thời gian thi: 120 phút (Không kể thời gian giao đề) Ngày thi: 05 tháng 04 năm 2023Câu 1: (3,0 điểm) a. Tìm các cặp số nguyên (x; y) thỏa mãn b. Cho a, b, c là các số nguyên thỏa mãn a + b +2024c = c3. Chứng minh rằngCâu 2: (4,5 điểm) a. Giải phương trình b. Cho các số thực a, b, c thỏa mãn abc =1. Chứng minh rằng:Câu 3: (4,5 điểm) a. Biết rằng đa thức P(x) chia cho x -1 dư 2, P(x) chia cho x2 + 1 dư 3x + 4. Tìm đa thức dư trong phép chia P(x) cho (x -1)(x2+1). b. Cho các số thực a,b,c thỏa mãn: Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức P = .Câu 4: (7,0 điểm) Cho tam giác ABC nhọn (AB HƯỚNG DẪN CHẤM ĐỀ THI CHỌN HỌC SINH GIỎI OLYMPIC LỚP 8 Năm học: 2022 – 2023 THAM KHẢO Đề thi môn: Toán TT Ý Nội dung ĐiểmCâu 1 a. 2.0 đ 0.25 0.25 0.25 0.25 Chia ra 4 trường hợp, mỗi TH giải đúng 0.25x4 , , , Nghiệm của phương trình là x =1, y =1. b. 1.0 đ Ta có, 0.25 0.25 0.5Câu 2 a. 2.5 đ 0.25 1.5 0.25x3 b. 2.0 đ 1.0 0.5 0.5Câu 3 a. 2.5 đ Gọi đa thức thương là Q(x), 0.5 đa thức dư là ax2 + bx +c Ta có: P(x) =(x -1)(x2 + 1).Q(x) + ax2 + bx + c 0.5 =(x -1)(x2+1).Q(x) + a(x2+1) +bx + c – a Vì P(x) chia cho x -1 dư 2 nên ta có, P(1)=2 0.5 Vì P(x) chia cho x +1 dư 3x +4 nên 2 0.5 Suy ra 0.5 Vậy đa thức dư là x2 + 3x b. 2.0 đ • Ta có 0.25 0.25 0.25 Vậy Min P = 3 khi a = b = c = 1 0.25 • Ta có P = 0.25 0.25 Vì 0.25 bằng 0, một số bằng 1 0.25 Vậy Max P = 5 khi (a,b,c) là hoán vị của bộ số (0,1,2)Câu 4 A E I F H K B D C a. 3.0 đ 1.0 1.0 1.0 b. 3.0 đ 1.0 0.5 0.5 0.5 ...
Tìm kiếm theo từ khóa liên quan:
Đề thi HSG Olympic Đề thi HSG Olympic lớp 8 Đề thi HSG Olympic Toán lớp 8 Bài tập Toán lớp 8 Giải phương trình Tính giá trị biểu thứcGợi ý tài liệu liên quan:
-
9 trang 479 0 0
-
Bộ câu hỏi ôn luyện thi Rung chuông vàng lớp 5
10 trang 199 0 0 -
Đề thi học sinh giỏi môn Toán lớp 12 năm 2023-2024 có đáp án - Trường THPT Mai Anh Tuấn, Thanh Hóa
9 trang 199 0 0 -
7 trang 184 0 0
-
Giáo án Toán lớp 4: Tuần 33 (Sách Chân trời sáng tạo)
14 trang 119 0 0 -
Bộ đề thi vào lớp 10 môn Toán các tỉnh năm học 2023-2024
288 trang 111 0 0 -
65 trang 111 0 0
-
Chuyên đề phát triển VD - VDC: Đề tham khảo thi TN THPT năm 2023 môn Toán
529 trang 105 0 0 -
Đề thi học sinh giỏi cấp tỉnh môn Toán THPT năm 2023-2024 có đáp án - Sở GD&ĐT Vĩnh Long
4 trang 97 7 0 -
Bộ đề thi vào lớp 10 môn Toán của các Sở Giáo dục và Đạo tạo
56 trang 68 0 0