Thông tin tài liệu:
Mời các bạn cùng tham khảo tài liệu Đề thi khảo sát chất lượng làn IV năm 2012-2013 môn Toán - Trường THPT chuyên Vĩnh Phúc sau đây. Tài liệu gồm có phần đề thi và phần hướng dẫn giải chi tiết sẽ giúp ích cho các bạn học sinh trong việc ôn luyện cũng như thử sức mình trước kì thi THPT sắp tới.
Nội dung trích xuất từ tài liệu:
Đề thi khảo sát chất lượng làn IV năm 2012-2013 môn Toán - Trường THPT chuyên Vĩnh PhúcS GD- T V NH PHÚC THI KH O SÁT CH T L NG L N IV N M H C 2012 – 2013TR NG THPT CHUYÊN Môn: TOÁN 12 – Kh i A,A1 V NH PHÚC Th i gian: 180 phút (Không k giao ) I. PH N CHUNG CHO T T C CÁC THÍ SINH Câu 1. Cho hàm s y = − x3 + (2m + 1) x 2 − m − 1 (m là tham s ). 1. Kh o sát s bi n thiên và v th c a hàm s khi m = 1. 2. Tìm t t c các giá tr c a tham s th c m th c a hàm s ã chi ti p xúc v i ng th ng y = 2mx − m − 1. Câu 2. Gi i ph ng trình 3 ( 2 cos 2 x + cos x − 2 ) + ( 3 − 2 cos x ) sin x = 0 . 2x + y +1 − x + y = 1 Câu 3. Gi i h ph ng trình ( x, y ∈ ) 3x + 2 y = 4 Câu 4. Tìm di n tích hình ph ng gi i h n b i th hàm s y = e x + 1, tr c hoành và hai ng th ng x = ln 3, x = ln 8. Câu 5. Cho hình l ng tr ABC. A′B′C ′ có áy là tam giác u c nh a, hình chi u c a nh A′ trên m t ph ng ( ABC ) trùng v i tâm O c a tam giác ABC. Bi t r ng kho ng cách gi a hai ng th ng a 3 BC và AA′ b ng , hãy tính th tích c a hình l ng tr và di n tích c a thi t di n khi c t l ng 4 tr b i m t ph ng i qua BC vuông góc v i AA′ . Câu 6. Cho các s th c a, b, c b t k . Ch ng minh r ng (a 2 + 2)(b 2 + 2)(c 2 + 2) ≥ 3(a + b + c)2 II. PH N RIÊNG (Thí sinh ch c m t trong hai ph n riêng, ph n A ho c ph n B ) A. Theo ch ng trình chu n Câu 7a. Trong m t ph ng v i h t!a Oxy, cho ng tròn (C ) : x 2 + y 2 + 2 x − 4 y − 27 = 0 và i m M (1; −2). Hãy vi t ph ng trình c a ng th ng ∆ i qua M, c t ng tròn ã cho t i hai i m A và B sao cho các ti p tuy n c a (C ) t i A và B vuông góc v i nhau. Câu 8a. Trong không gian v i h tr c t!a Oxyz cho m t ph ng ( P ) : 3 x − 2 y + z − 4 = 0 và hai i m A(1;3; 2), B (2;3;1). G!i I là trung i m c a o n th ng AB. Tìm t!a i m J sao cho IJ vuông góc v i m t ph ng ( P ) ng th i J cách u g c t!a O và m t ph ng ( P). Câu 9a. Tìm h s c a x trong khai tri n (1 + x − 3 x 2 ) n , bi t r ng n là s nguyên d 4 ng th#a mãn A + A + A = 156. 1 n 2 n 3 n B. Theo ch ng trình nâng cao Câu 7b. Trong m t ph ng v i h t!a Oxy, cho tam giác ABC v i các ng th ng ch a ng cao k$ t% B, phân giác trong k$ t% A l&n l t có ph ng trình x + 3 y − 4 = 0, 3 x + y − 12 = 0. Bi t r ng i m M (0; 2) là m i m n m trên ng th ng AB và cách nh C mt kho ng b ng 2 10, tìm t!a các nh c a tam giác. Câu 8b. Trong không gian v i h t!a Oxyz cho i m A(3; 2;1), m t ph ng ( P ) : x + y + z + 2 = 0 y −1 và ng th ng ∆ : 1x = 2 = z−+11 . Vi t ph ng trình c a ng th ng d i qua A, c t ∆ và ( P ) theo th t t i B và C sao cho A là trung i m BC. 3 Câu 9b. Gi i ph ng trình log 2 ( x + 5) + log 2 2 | x − 1|= 1 + log16 ( x 2 − 3 x + 2)4 2 Cán b coi thi không gi i thích gì thêm!S GD- T V NH PHÚC THI KH O SÁT CH T L NG L N IV N M H C 2012 – 2013TR NG THPT CHUYÊN HD ch m môn TOÁN 12 – Kh i A,A1 V NH PHÚC H ng d n chung: - M(i mt bài toán có th có nhi u cách gi i, trong HDC này ch trình bày s l c mt cách gi i. H!c sinh có th gi i theo nhi u cách khác nhau, n u ý và cho k t qu úng, giám kh o v)n cho i m t i a c a ph&n ó. - Câu (Hình h!c không gian), n u h!c sinh v hình sai ho c không v hình chính c a bài toán, thì không cho i m; câu (Hình h!c gi i tích) không nh t thi t ph i v hình. - i m toàn bài ch m chi ti t n 0.25, không làm tròn. - HDC này có 04 trang. Câu N i dung trình bày i m 1 1.m = 1: y = − x + 3 x − 2 . TX : 3 2 0.25 Chi u bi n thiên: y′ = 3x (2 − x ), y ′ = 0 ⇔ x = 0 ∨ x = 2 Xét d u y′ và k t lu*n: ...