ĐỀ THI MÔN TOÁN - KỲ THI ĐẠI HỌC KHỐI A NĂM 2008
Số trang: 1
Loại file: pdf
Dung lượng: 132.22 KB
Lượt xem: 8
Lượt tải: 0
Xem trước 1 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨCĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2008 Môn thi: TOÁN, khối A Thời gian làm bài 180 phút, không kể thời gian phát đềPHẦN CHUNG CHO TẤT CẢ THÍ SINH Câu I (2 điểm) mx 2 + (3m 2 − 2)x − 2 Cho hàm số y = (1), với m là tham số thực. x + 3m 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 1 . 2. Tìm các giá trị của m để góc giữa hai đường...
Nội dung trích xuất từ tài liệu:
ĐỀ THI MÔN TOÁN - KỲ THI ĐẠI HỌC KHỐI A NĂM 2008BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2008 Môn thi: TOÁN, khối A ĐỀ CHÍNH THỨC Thời gian làm bài 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH Câu I (2 điểm) mx 2 + (3m 2 − 2)x − 2 Cho hàm số y = (1), với m là tham số thực. x + 3m 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 1 . 2. Tìm các giá trị của m để góc giữa hai đường tiệm cận của đồ thị hàm số (1) bằng 45o. Câu II (2 điểm) ⎛ 7π ⎞ 1 1 + = 4s in ⎜ − x ⎟ . 1. Giải phương trình ⎛ 3π ⎞ s inx ⎝4 ⎠ sin ⎜ x − ⎟ ⎝ 2⎠ ⎧2 5 3 2 ⎪ x + y + x y + xy + xy = − 4 ⎪ ( x, y ∈ ) . 2. Giải hệ phương trình ⎨ ⎪ x 4 + y 2 + xy(1 + 2x) = − 5 ⎪ ⎩ 4 Câu III (2 điểm) Trong không gian với hệ tọa độ Oxyz, cho điểm A ( 2;5;3) và đường thẳng x −1 y z − 2 == d:. 2 1 2 1. Tìm tọa độ hình chiếu vuông góc của điểm A trên đường thẳng d. 2. Viết phương trình mặt phẳng (α) chứa d sao cho khoảng cách từ A đến (α) lớn nhất. Câu IV (2 điểm) π tg 4 x 6 1. Tính tích phân I = ∫ dx. cos 2x 0 2. Tìm các giá trị của tham số m để phương trình sau có đúng hai nghiệm thực phân biệt : 2x + 2x + 2 4 6 − x + 2 6 − x = m (m ∈ ). 4 PHẦN RIÊNG __________ Thí sinh chỉ được làm 1 trong 2 câu: V.a hoặc V.b __________ Câu V.a. Theo chương trình KHÔNG phân ban (2 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy, hãy viết phương trình chính tắc của elíp (E) biết rằng 5 (E) có tâm sai bằng và hình chữ nhật cơ sở của (E) có chu vi bằng 20. 3 2. Cho khai triển (1 + 2x ) = a 0 + a1x + ... + a n x n , trong đó n ∈ * và các hệ số a 0 , a1 ,..., a n n a1 a thỏa mãn hệ thức a 0 + + ... + n = 4096. Tìm số lớn nhất trong các số a 0 , a1 ,..., a n . 2n 2 Câu V.b. Theo chương trình phân ban (2 điểm) 1. Giải phương trình log 2x −1 (2x 2 + x − 1) + log x +1 (2x − 1) 2 = 4. 2. Cho lăng trụ ABC.A B C có độ dài cạnh bên bằng 2a, đáy ABC là tam giác vuông tại A, AB = a, AC = a 3 và hình chiếu vuông góc của đỉnh A trên mặt phẳng (ABC) là trung điểm của cạnh BC. Tính theo a thể tích khối chóp A .ABC và tính cosin của góc giữa hai đường thẳng AA , B C . ...........................Hết........................... Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh:........................................................ Số báo danh:...............................................
Nội dung trích xuất từ tài liệu:
ĐỀ THI MÔN TOÁN - KỲ THI ĐẠI HỌC KHỐI A NĂM 2008BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2008 Môn thi: TOÁN, khối A ĐỀ CHÍNH THỨC Thời gian làm bài 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH Câu I (2 điểm) mx 2 + (3m 2 − 2)x − 2 Cho hàm số y = (1), với m là tham số thực. x + 3m 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 1 . 2. Tìm các giá trị của m để góc giữa hai đường tiệm cận của đồ thị hàm số (1) bằng 45o. Câu II (2 điểm) ⎛ 7π ⎞ 1 1 + = 4s in ⎜ − x ⎟ . 1. Giải phương trình ⎛ 3π ⎞ s inx ⎝4 ⎠ sin ⎜ x − ⎟ ⎝ 2⎠ ⎧2 5 3 2 ⎪ x + y + x y + xy + xy = − 4 ⎪ ( x, y ∈ ) . 2. Giải hệ phương trình ⎨ ⎪ x 4 + y 2 + xy(1 + 2x) = − 5 ⎪ ⎩ 4 Câu III (2 điểm) Trong không gian với hệ tọa độ Oxyz, cho điểm A ( 2;5;3) và đường thẳng x −1 y z − 2 == d:. 2 1 2 1. Tìm tọa độ hình chiếu vuông góc của điểm A trên đường thẳng d. 2. Viết phương trình mặt phẳng (α) chứa d sao cho khoảng cách từ A đến (α) lớn nhất. Câu IV (2 điểm) π tg 4 x 6 1. Tính tích phân I = ∫ dx. cos 2x 0 2. Tìm các giá trị của tham số m để phương trình sau có đúng hai nghiệm thực phân biệt : 2x + 2x + 2 4 6 − x + 2 6 − x = m (m ∈ ). 4 PHẦN RIÊNG __________ Thí sinh chỉ được làm 1 trong 2 câu: V.a hoặc V.b __________ Câu V.a. Theo chương trình KHÔNG phân ban (2 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy, hãy viết phương trình chính tắc của elíp (E) biết rằng 5 (E) có tâm sai bằng và hình chữ nhật cơ sở của (E) có chu vi bằng 20. 3 2. Cho khai triển (1 + 2x ) = a 0 + a1x + ... + a n x n , trong đó n ∈ * và các hệ số a 0 , a1 ,..., a n n a1 a thỏa mãn hệ thức a 0 + + ... + n = 4096. Tìm số lớn nhất trong các số a 0 , a1 ,..., a n . 2n 2 Câu V.b. Theo chương trình phân ban (2 điểm) 1. Giải phương trình log 2x −1 (2x 2 + x − 1) + log x +1 (2x − 1) 2 = 4. 2. Cho lăng trụ ABC.A B C có độ dài cạnh bên bằng 2a, đáy ABC là tam giác vuông tại A, AB = a, AC = a 3 và hình chiếu vuông góc của đỉnh A trên mặt phẳng (ABC) là trung điểm của cạnh BC. Tính theo a thể tích khối chóp A .ABC và tính cosin của góc giữa hai đường thẳng AA , B C . ...........................Hết........................... Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh:........................................................ Số báo danh:...............................................
Tìm kiếm theo từ khóa liên quan:
đề thi đại học luyện thi đại học ôn thi toán học đề thi toán học bài tập toán họcGợi ý tài liệu liên quan:
-
Các phương pháp tìm nhanh đáp án môn Toán: Phần 2
166 trang 191 0 0 -
Bài giảng chuyên đề luyện thi đại học Vật lý – Chương 9 (Chủ đề 1): Đại cương về hạt nhân nguyên tử
0 trang 96 0 0 -
0 trang 86 0 0
-
Tài liệu ôn luyện chuẩn bị cho kỳ thi THPT Quốc gia môn Toán: Phần 2
135 trang 60 0 0 -
Bộ 14 đề thi đại học có đáp án 2010
153 trang 49 0 0 -
500 Bài toán bất đẳng thức - Cao Minh Quang
49 trang 48 0 0 -
Môn Toán 10-11-12 và các đề thi trắc nghiệm: Phần 1
107 trang 44 0 0 -
Luyện thi đại học môn Vật lý mã đề 174_01
16 trang 39 0 0 -
Luyện thi đại học môn Vật lý - Mã đề 175_23
14 trang 34 0 0 -
Luyện thi đại học môn Vật lý mã đề 174_02
10 trang 34 0 0